I am using Python 3.5 and I have NumPy, SciPy, and matplotlib installed and imported.
When I try:
# Import the random forest package
from sklearn.ensemble import RandomForestClassifier
# Create the random forest object which will include all the parameters
# for the fit
forest = RandomForestClassifier(n_estimators = 1)
# Fit the training data to the Survived labels and create the decision trees
forest = forest.fit(train_data[0::,1::],train_data[0::,0])
# Take the same decision trees and run it on the test data
output = forest.predict(test_data)
(test_data and train_data are both float arrays) I get the following error:
C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\utils\fixes.py:64: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
if 'order' in inspect.getargspec(np.copy)[0]:
C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\base.py:175: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
args, varargs, kw, default = inspect.getargspec(init)
C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\base.py:175: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
args, varargs, kw, default = inspect.getargspec(init)
C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\base.py:175: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
args, varargs, kw, default = inspect.getargspec(init)
C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\base.py:175: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
args, varargs, kw, default = inspect.getargspec(init)
Traceback (most recent call last):
File "C:/Users/Uri/PycharmProjects/titanic1/fdsg.py", line 54, in <module>
output = forest.predict(test_data)
File "C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\ensemble\forest.py", line 461, in predict
X = check_array(X, ensure_2d=False, accept_sparse="csr")
File "C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\utils\validation.py", line 352, in check_array
_assert_all_finite(array)
File "C:\Users\Uri\AppData\Local\Programs\Python\Python35-32\lib\site-packages\sklearn\utils\validation.py", line 52, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
Process finished with exit code 1
RandomForrestClassifierjust fine though?editand not in the comments. I added the code in your comment for now, update it if necessary. You need to specify if the error is something other than DeprecationWarning (which is a Warning).ValueError: Input contains NaN, infinity or a value too large for dtype('float64').is telling you you have invalid values in your data.