I'm working on a Computer Vision system and this is giving me a serious headache. I'm having trouble re-implementing an old gradient operator more efficiently, I'm working with numpy and openCV2.
This is what I had:
def gradientX(img):
rows, cols = img.shape
out = np.zeros((rows,cols))
for y in range(rows-1):
Mr = img[y]
Or = out[y]
Or[0] = Mr[1] - Mr[0]
for x in xrange(1, cols - 2):
Or[x] = (Mr[x+1] - Mr[x-1])/2.0
Or[cols-1] = Mr[cols-1] - Mr[cols-2]
return out
def gradient(img):
return [gradientX(img), (gradientX(img.T).T)]
I've tried using numpy's gradient operator but the result is not the same For this input
array([[ 3, 4, 5],
[255, 0, 12],
[ 25, 15, 200]])
Using my gradient returns
[array([[ 1., 0., 1.],
[-255., 0., 12.],
[ 0., 0., 0.]]),
array([[ 252., -4., 0.],
[ 0., 0., 0.],
[-230., 15., 0.]])]
While using numpy's np.gradient returns
[array([[ 252. , -4. , 7. ],
[ 11. , 5.5, 97.5],
[-230. , 15. , 188. ]]),
array([[ 1. , 1. , 1. ],
[-255. , -121.5, 12. ],
[ -10. , 87.5, 185. ]])]
There are cleary some similarities between the results but they're definitely not the same. So I'm missing something here or the two operators aren't mean to produce the same results. In that case, I wanted to know how to re-implement my gradientX function so it doesn't use that awful looking double loop for traversing the 2-d array using mostly numpy's potency.
numpy.gradient(img)[::-1]with certain rows/columns set to zero.