Not knowing how those std::thread classes are implemented, one possible explanation for the 53ms could be:
The threads are started right away when they get instantiated. (I see no thread.start() or threads.StartAll() or alike). So, during the time the first thread instance gets active, the main thread might (or might not) be preempted. There is no guarantee that the threads are getting spawned on individual cores, after all (thread affinity).
If you have a closer look at POSIX APIs, there is the notion of "application context" and "system context", which basically implies, that there might be an OS policy in place which would not use all cores for 1 application.
On Windows (this is where you were testing), maybe the threads are not being spawned directly but via a thread pool, maybe with some extra std::thread functionality, which could produce overhead/delay. (Such as completion ports etc.).
Unfortunately my machine is pretty fast so I had to increase the amount of data processed to yield significant times. But on the upside, this reminded me to point out, that typically, it starts to pay off to go parallel when the computation times are way beyond the time of a time slice (rule of thumb).
Here my "native" Windows implementation, which - for a large enough array finally makes the threads win over a single threaded computation.
#include <stdafx.h>
#include <nativethreadTest.h>
#include <vector>
#include <cstdint>
#include <Windows.h>
#include <chrono>
#include <iostream>
#include <thread>
struct Range
{
Range( const int32_t *p, size_t l)
: data(p)
, length(l)
, result(0)
{}
const int32_t *data;
size_t length;
int32_t result;
};
static int32_t Sum(const int32_t * data, size_t length)
{
int32_t sum = 0;
const int32_t *end = data + length;
for (; data != end; data++)
{
sum += *data;
}
return sum;
}
static int32_t TestSingleThreaded(const Range& range)
{
return Sum(range.data, range.length);
}
DWORD
WINAPI
CalcThread
(_In_ LPVOID lpParameter
)
{
Range * myRange = reinterpret_cast<Range*>(lpParameter);
myRange->result = Sum(myRange->data, myRange->length);
return 0;
}
static int32_t TestWithNCores(const Range& range, size_t ncores)
{
int32_t result = 0;
std::vector<Range> ranges;
size_t nextStart = 0;
size_t chunkLength = range.length / ncores;
size_t remainder = range.length - chunkLength * ncores;
while (nextStart < range.length)
{
ranges.push_back(Range(&range.data[nextStart], chunkLength));
nextStart += chunkLength;
}
Range remainderRange(&range.data[range.length - remainder], remainder);
std::vector<HANDLE> threadHandles;
threadHandles.reserve(ncores);
for (size_t i = 0; i < ncores; ++i)
{
threadHandles.push_back(::CreateThread(NULL, 0, CalcThread, &ranges[i], 0, NULL));
}
int32_t remainderResult = Sum(remainderRange.data, remainderRange.length);
DWORD waitResult = ::WaitForMultipleObjects((DWORD)threadHandles.size(), &threadHandles[0], TRUE, INFINITE);
if (WAIT_OBJECT_0 == waitResult)
{
for (auto& r : ranges)
{
result += r.result;
}
result += remainderResult;
}
else
{
throw std::runtime_error("Something went horribly - HORRIBLY wrong!");
}
for (auto& h : threadHandles)
{
::CloseHandle(h);
}
return result;
}
static int32_t TestWithSTLThreads(const Range& range, size_t ncores)
{
int32_t result = 0;
std::vector<Range> ranges;
size_t nextStart = 0;
size_t chunkLength = range.length / ncores;
size_t remainder = range.length - chunkLength * ncores;
while (nextStart < range.length)
{
ranges.push_back(Range(&range.data[nextStart], chunkLength));
nextStart += chunkLength;
}
Range remainderRange(&range.data[range.length - remainder], remainder);
std::vector<std::thread> threads;
for (size_t i = 0; i < ncores; ++i)
{
threads.push_back(std::thread([](Range* range){ range->result = Sum(range->data, range->length); }, &ranges[i]));
}
int32_t remainderResult = Sum(remainderRange.data, remainderRange.length);
for (auto& t : threads)
{
t.join();
}
for (auto& r : ranges)
{
result += r.result;
}
result += remainderResult;
return result;
}
void TestNativeThreads()
{
const size_t DATA_SIZE = 800000000ULL;
typedef std::vector<int32_t> DataVector;
DataVector data;
data.reserve(DATA_SIZE);
for (size_t i = 0; i < DATA_SIZE; ++i)
{
data.push_back(static_cast<int32_t>(i));
}
Range r = { data.data(), data.size() };
std::chrono::system_clock::time_point singleThreadedStart = std::chrono::high_resolution_clock::now();
int32_t result = TestSingleThreaded(r);
std::chrono::system_clock::time_point singleThreadedEnd = std::chrono::high_resolution_clock::now();
std::cout
<< "Single threaded sum: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(singleThreadedEnd - singleThreadedStart).count()
<< "ms." << " Result = " << result << std::endl;
std::chrono::system_clock::time_point multiThreadedStart = std::chrono::high_resolution_clock::now();
result = TestWithNCores(r, 8);
std::chrono::system_clock::time_point multiThreadedEnd = std::chrono::high_resolution_clock::now();
std::cout
<< "Multi threaded sum: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(multiThreadedEnd - multiThreadedStart).count()
<< "ms." << " Result = " << result << std::endl;
std::chrono::system_clock::time_point stdThreadedStart = std::chrono::high_resolution_clock::now();
result = TestWithSTLThreads(r, 8);
std::chrono::system_clock::time_point stdThreadedEnd = std::chrono::high_resolution_clock::now();
std::cout
<< "std::thread sum: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(stdThreadedEnd - stdThreadedStart).count()
<< "ms." << " Result = " << result << std::endl;
}
Here the output on my machine of this code:
Single threaded sum: 382ms. Result = -532120576
Multi threaded sum: 234ms. Result = -532120576
std::thread sum: 245ms. Result = -532120576
Press any key to continue . . ..
Last not least, I feel urged to mention that the way this code is written it is rather a memory IO performance benchmark than a core CPU computation benchmark.
Better computation benchmarks would use small amounts of data which is local, fits into CPU caches etc.
Maybe it would be interesting to experiment with the splitting of the data into ranges. What if each thread were "jumping" over the data from the start to an end with a gap of ncores? Thread 1: 0 8 16... Thread 2: 1 9 17 ... etc.? Maybe then the "locality" of the memory could gain extra speed.