I have a collection with a sub-document consisting of more than 40K records. My aggregate query takes about 300 secs. I have tried optimizing the same using compound as well as multi-key indexing, which completes in 180 secs.
I still require a reduced query time execution.
here is my collection:
{
"_id" : ObjectId("545b32cc7e9b99112e7ddd97"),
"grp_id" : 654,
"user_id" : 2,
"mod_on" : ISODate("2014-11-06T08:35:40.857Z"),
"crtd_on" : ISODate("2014-11-06T08:35:24.791Z"),
"uploadTp" : 0,
"tp" : 1,
"status" : 3,
"id_url" : [
{"mid":"xyz12793"},
{"mid":"xyz12794"},
{"mid":"xyz12795"},
{"mid":"xyz12796"}
],
"incl" : 1,
"total_cnt" : 25,
"succ_cnt" : 25,
"fail_cnt" : 0
}
and following is my query
db.member_id_transactions.aggregate([ { '$match':
{ id_url: { '$elemMatch': { mid: 'xyz12794' } } } },
{ '$unwind': '$id_url' },
{ '$match': { grp_id: 654, 'id_url.mid': 'xyz12794' } } ])
has anyone faced the same issue?
here's the o/p for aggregate query with explain option
{
"result" : [
{
"_id" : ObjectId("546342467e6d1f4951b56285"),
"grp_id" : 685,
"user_id" : 2,
"mod_on" : ISODate("2014-11-12T11:24:01.336Z"),
"crtd_on" : ISODate("2014-11-12T11:19:34.682Z"),
"uploadTp" : 1,
"tp" : 1,
"status" : 3,
"id_url" : [
{"mid":"xyz12793"},
{"mid":"xyz12794"},
{"mid":"xyz12795"},
{"mid":"xyz12796"}
],
"incl" : 1,
"__v" : 0,
"total_cnt" : 21406,
"succ_cnt" : 21402,
"fail_cnt" : 4
}
],
"ok" : 1,
"$gleStats" : {
"lastOpTime" : Timestamp(0, 0),
"electionId" : ObjectId("545c8d37ab9cc679383a1b1b")
}
}