First post, extremely limited in coding knowledge and new to C. Be gentle! I am at the point where "trying" different things is just confusing me more and more. I need someone's correct guidance!
This particular problem is from an online edX course I am attempting which ultimately when implemented correctly, checks a given word read in from a text file (the 'check' function) and compares it to each word read into (from the 'load' function) a linked list of structs.
I believe I have the load function implemented correctly as when I use gdb, as I am seeing what I anticipate as I step through it, but my question and my problem relates specifically to the check function. I still have a lot to implement to finish my code but while testing with gdb, I am not seeing values of the char* member of the struct correspond with what I anticipate I should see.
When using gdb and stepping through the 'check' function and trying to access the
dwordmember of the struct nodes in the linked list I created in the load function, I anticipate I should see a string for the char* member. For instance, I anticipate the word "cat" assigned tocurrent->dword, but am instead seeing in gdb when I test:~(gdb) print current->dword
$13 = 0xbfffede2 "\004\b\214\365\372D\300\355\377\277"
My thoughts are that I'm still only accessing an address somehow and not the actual value, but I'm oblivious as to why this is. When the node is created in the load function, a value is assigned to the dword member correctly (at least as far as I can tell while stepping through the code in gdb) but doesn't seem to be accessed correctly in the check function. Any help for a newbie would be appreciated!
#include <ctype.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dictionary.h"
typedef struct node
{
char* dword;
struct node* next;
}
node;
// keep track of #of words in dictionary loaded
int wordCounter = 0;
// create root for hash table
node* root[26];
// create cursor to keep place in creating, pointing, and traversing through nodes
node* current = NULL;
/**
* Returns true if word is in dictionary else false.
*/
bool check(const char* word)
{
// size of word read into buffer
int wordSize = sizeof(word);
// prepare to make a new lowercase only word for comparison to lowercase only dictionary
char bufWord[wordSize];
// make it
for(int i = 0; i < wordSize; i++)
{
if (i == wordSize - 1)
{
bufWord[i] = '\0';
}
else
{
bufWord[i] = tolower(word[i]);
}
}
// hash word to achieve proper root node location
int hash = bufWord[0] - 97;
// point to the correct root node to begin traversing
current = root[hash];
// make sure there is even a word in hash table location
if(root[hash] == NULL)
{
return false;
}
else if(root[hash] != NULL)
{
// progress through the nodes until the last node's next pointer member is NULL
while(current != NULL)
{
// compare 1st letter only of current->dword[i] to bufWord[i] to save time
// if they don't match, return false
// if they do match then continue
\
char dictWord[wordSize];
// hold copy of struct member value to compare to dictWord
char* wordTemp = current->dword;
//
for(int i = 0; i < wordSize; i++)
{
dictWord[i] = wordTemp[i];
}
// do a spell check
if(strcmp(bufWord, dictWord) == 0)
{
return true;
}
else
{
// set current to the next node if any or NULL if it's already the last node in the list
current = current->next;
}
}
}
return false;
}
/**
* Loads dictionary into memory. Returns true if successful else false.
*/
bool load(const char* dictionary)
{
// buffer for reading in dictionary words
char wordIn[LENGTH + 1];
// open the dictionary file
FILE* newDict = fopen(dictionary, "r");
for (int i = 0; i < 27; i++)
{
root[i] = NULL;
}
// while there are words to read
while(fscanf(newDict, "%s ", wordIn) > 0)
{
// keep track of #of words for constant time read in size function
wordCounter++;
// hash the first letter for the location in root
int hash = wordIn[0] - 97;
// malloc space for a new node
node* newNode = malloc(sizeof(node));
// error check
if (newNode == NULL)
{
return false;
}
// set value member of node to current word
newNode->dword = wordIn;
// first insertion into linked list if that root node has not been used yet
if(root[hash] == NULL)
{
// sets to NULL
newNode->next = root[hash];
// link it
root[hash] = newNode;
}
else if(root[hash] != NULL)
{
// starts at the root
node* current = root[hash];
// insert into new beginning of list
newNode->next = current;
root[hash] = newNode;
}
}
fclose(newDict);
return true;
}
/**
* Returns number of words in dictionary if loaded else 0 if not yet loaded.
*/
unsigned int size(void)
{
return wordCounter;
}
/**
* Unloads dictionary from memory. Returns true if successful else false.
*/
bool unload(void)
{
// TODO
return false;
}