I need to append the arrays created in each loop so that I get a single ndarray at the end. The code structure is like this:
for...:
.
.
.
for...:
list1 = array([some_math_here])
list2.append(list1)
#each loop creats a list, converting it to array() gives different shaped arrays:
array(list2).shape
(2939, 4)
(2942, 4)
(2027, 4)
(2030, 4)
#list3 collects all the generated results
list3.append(list2)
Q:
How can I have an array instead of list3, with n*4 columns and different number of rows?
I tried by creating an empty array a = array([0.,1.]) and then append(a,array(list_2)) but doesn't work. I'm aware of hstack vstack etc, but cannot make use of them together with append in the loop. Any advice how?
UPDATE Here's the actual code with output from suggested methods:
files_ = glob.glob('D:\Test files\*.txt')
tfile_ = loadtxt('times.txt')
averages_, d = [], []
with open ('outfile.csv', 'wb') as outfile:
writer = csv.writer(outfile)
for fcount_, fname_ in enumerate(files_):
data = loadtxt(fname_ , usecols = (1,2,3,4))
average_, fcol = [], []
seg_len = 3
for x in range(0, len(data[:,0]), seg_len):
sample_means = [mean(data[x:x+seg_len,i]) for i in range(4)]
none_zeros = [x if x >= 0 else x == 0 for x in sample_means]
average_.append(none_zeros)
fcol = cumsum(array(average_)[:,0])
average_ = array([row + [col] for row, col in zip(average_, fcol)])
averages_.append(average_)
d = concatenate(array(averages_))
df = pd.DataFrame(d)
df.to_csv('pdtest2.csv')
output:
0 1 2 3 4
0 0.037039 0.103792 0.136116 0.579297 0.037039
1 0.051183 0.104669 0.177728 0.593771 0.088222
2 0.059517 0.105437 0.174274 0.571402 0.147739
3 0.053212 0.102476 0.167530 0.645745 0.200950
4 0.054637 0.104450 0.165228 0.596622 0.054637
5 0.051622 0.101161 0.166708 0.595964 0.106259
6 0.057324 0.099077 0.168024 0.596841 0.163583
7 0.054692 0.103573 0.157168 0.598596 0.218275
8 0.066699 0.100612 0.145984 0.591578 0.284974
9 0.120866 5.527104 4.678589 2.401020 0.120866
10 0.113958 5.176220 4.669872 2.361985 0.234824
11 0.121469 4.879613 4.659017 2.359573 0.356293
12 0.122511 4.695618 4.642240 2.363959 0.478803
13 0.126650 4.621933 4.620447 2.347073 0.605453
14 0.132708 4.676868 4.517568 2.364617 0.132708
15 0.125087 4.693535 4.459672 2.381941 0.257795
16 0.132708 4.715246 4.444705 2.334353 0.390503
17 0.133476 4.745619 4.406300 2.317467 0.523979
while I want :
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0.037038522 0.103792144 0.136115724 0.57929719 0.037038522 0.054637318 0.104450043 0.16522775 0.596621864 0.054637318 0.12086581 5.527104488 4.678589189 2.401020431 0.12086581 0.132707991 4.67686799 4.517567512 2.364616645 0.132707991
1 0.051183348 0.104669343 0.177727829 0.593770968 0.08822187 0.051621948 0.101160549 0.166708023 0.595963965 0.106259265 0.113957871 5.176219782 4.669871979 2.361985046 0.234823681 0.125087328 4.693534961 4.459672089 2.381941338 0.257795319
2 0.059516735 0.105436892 0.17427386 0.571402402 0.147738605 0.057323738 0.099077202 0.168023821 0.596841163 0.163583003 0.121468884 4.879613015 4.659016582 2.359572747 0.356292565 0.132707991 4.715245885 4.444704808 2.334353258 0.39050331
3 0.05321187 0.102476346 0.167530397 0.645744989 0.200950475 0.054692143 0.103572845 0.157168489 0.598595561 0.218275146 0.122510557 4.695618334 4.642240062 2.363958746 0.478803122 0.13347554 4.745619253 4.406299754 2.317467166 0.52397885
4 0 0 0 0 0 0.066698797 0.1006123 0.145984208 0.591577971 0.284973943 0.126649838 4.621932787 4.620447035 2.347072653 0.60545296 0 0 0 0 0
forloop, or can you use vectorized operations to produce cleaner, faster code without it?np.nanor0or use a masked array. The method by which to stack though would be to append your arrays to a list through your loop, then callnp.column_stackornp.hstackon your list at the end of the loops, don'tnp.appendto the arrays within the loops.