4

From the answer to this question (Sort a numpy array by another array, along a particular axis, using less memory), I learned how to sort a multidimensional numpy array a by the values of another numpy array b without creating too many additional arrays.

However, numpy.rec.fromarrays([a, b]) only works if the arrays a and b have the same shape. My b array is 1-D array, but a array is a N-D array (N is not specified). Is it a nice way (and efficient) to sort the a array among a particular axis by the value of the 1-D array b?

1 Answer 1

4

Use np.take with the axis keyword argument:

>>> a = np.arange(2*3*4).reshape(2, 3, 4)
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> b = np.arange(3)
>>> np.random.shuffle(b)
>>> b
array([1, 0, 2])
>>> np.take(a, b, axis=1)
array([[[ 4,  5,  6,  7],
        [ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],

       [[16, 17, 18, 19],
        [12, 13, 14, 15],
        [20, 21, 22, 23]]])

If you want to use fancy indexing, you just need to pad the indexing tuple with enough empty slices:

>>> a[:, b]
array([[[ 4,  5,  6,  7],
        [ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],

       [[16, 17, 18, 19],
        [12, 13, 14, 15],
        [20, 21, 22, 23]]])

Or in a more general setting:

>>> axis = 1
>>> idx = (slice(None),) * axis + (b,)
>>> a[idx]
array([[[ 4,  5,  6,  7],
        [ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],

       [[16, 17, 18, 19],
        [12, 13, 14, 15],
        [20, 21, 22, 23]]])

But np.take should really be your first option.

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.