1
$\begingroup$

For the vectors $X=(x_1,\cdots, x_n),~ Y=(y_1,\cdots, y_n)$ and $\alpha=(\alpha_1,\cdots,\alpha_n),~ \beta=(\beta_1,\cdots, \beta_n)\in\mathbb R^n_+$ s.t. $\sum_{k=1}^n\alpha_k~~=~~\sum_{k=1}^n\beta_k~~=~~1$, let $\mathcal P$ be the collection of matrices $p=(p_{i,j})_{1\le i\le n, 1\le j\le n}\in\mathbb R^{n\times n}_+$ satisfying

\begin{eqnarray} &&\sum_{j=1}^np_{i,j}~=~\alpha_i,~ \forall 1\le i\le n;~~~~~\sum_{i=1}^np_{i,j}~=~\beta_j,~ \forall 1\le j\le n; \\ &&\sum_{j=1}^np_{i,j}y_j~=~\alpha_ix_i,~ \forall 1\le i\le n. \end{eqnarray}

Given a matrix $c=(c_{i,j})_{1\le i\le n, 1\le j\le n}$, my question is how to solve numerically the following optimization problem:

\begin{eqnarray} \sup_{p=(p_{i,j})_{1\le i\le n, 1\le j\le n}\in\mathcal P}~\sum_{i=1}^n\sum_{j=1}^n p_{i,j}c_{i,j}. \end{eqnarray}

Here assume $\mathcal P\neq \emptyset$, does someone know some related algorithm? Thank you very much!

$\endgroup$

2 Answers 2

2
$\begingroup$

I am not sure I understand the question. The constraints are a system of linear equations and inequalties in the variables $p_{ij}$ and the objective function is linear. So, this is a box generic linear programming problem.

$\endgroup$
2
  • $\begingroup$ Thx for the reply. Could you please provide a detailed list of the related algorithms for solving such kind of LP Pbs? $\endgroup$ Commented May 11, 2017 at 12:47
  • $\begingroup$ It's a completely standard LP. Read Boyd and Vanderberghe's "Convex Optimization". $\endgroup$ Commented May 11, 2017 at 20:42
1
$\begingroup$

We have the following linear program (LP) in $\mathrm P \in \mathbb R^{n \times n}$

$$\begin{array}{ll} \text{maximize} & \langle \mathrm C, \mathrm P \rangle\\ \text{subject to} & \mathrm P 1_n = \mathrm a\\ & 1_n^{\top} \mathrm P = \mathrm b^{\top}\\ & \mathrm P \mathrm y = \mbox{diag} (\mathrm a) \, \mathrm x\\ & \mathrm P \geq \mathrm O_n\end{array}$$

where $\mathrm a, \mathrm b, \mathrm C, \mathrm x, \mathrm y$ are given. Vectorizing, we obtain the following LP in $\mbox{vec} (\mathrm P) \in \mathbb R^{n^2}$

$$\begin{array}{ll} \text{maximize} & \langle \mbox{vec} (\mathrm C), \mbox{vec} (\mathrm P) \rangle\\ \text{subject to} & (1_n^{\top} \otimes \mathrm I_n) \, \mbox{vec} (\mathrm P) = \mathrm a\\ & (\mathrm I_n \otimes 1_n^{\top}) \, \mbox{vec} (\mathrm P) = \mathrm b\\ & (\mathrm y^{\top} \otimes \mathrm I_n) \, \mbox{vec} (\mathrm P) = \mbox{diag} (\mathrm a) \, \mathrm x\\ & \mbox{vec} (\mathrm P) \geq \mathrm 0_{n^2}\end{array}$$

$\endgroup$
2
  • $\begingroup$ Could you please provide a detailed list of the related algorithms for solving such kind of LP Pbs? $\endgroup$ Commented May 11, 2017 at 12:47
  • $\begingroup$ Just use an LP solver. MS Excel has one. So does MATLAB. $\endgroup$ Commented May 11, 2017 at 12:51

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.