Let, X,Y are two independent RVs following $U(0,1)$. Let, $W=XI_{\{Y\leq X^2\}}$, where $I_{A}$ denotes the indicator function on the set $A$. Find out the CDF(Cumulative Distribution Function) of W.
Ans:
$P(W\leq w)=P(X\leq w, Y\leq X^2)+P(Y\geq X^2)=P(\sqrt{Y}\leq X \leq w )+P(X^2 \leq Y)$
Now, $P(\sqrt{Y}\leq X \leq w )=\int_{0}^{1}(\int_{\sqrt{y}}^{w} 1 dx) 1 dy=w-\frac{2}{3}$.
Again, $P(X^2 \leq Y)=\int_{0}^{1}(\int_{0}^{\sqrt{y}} 1 dx) 1 dy=\frac{2}{3}$.
Therefore, $P(W\leq w)=w$.
Is it correct?