Like what has been mentioned before, pandas object is most efficient when process the whole array at once. However for those who really need to loop through a pandas DataFrame to perform something, like me, I found at least three ways to do it. I have done a short test to see which one of the three is the least time consuming.
t = pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)})
B = []
C = []
A = time.time()
for i,r in t.iterrows():
C.append((r['a'], r['b']))
B.append(time.time()-A)
C = []
A = time.time()
for ir in t.itertuples():
C.append((ir[1], ir[2]))
B.append(time.time()-A)
C = []
A = time.time()
for r in zip(t['a'], t['b']):
C.append((r[0], r[1]))
B.append(time.time()-A)
print B
Result:
[0.5639059543609619, 0.017839908599853516, 0.005645036697387695]
This is probably not the best way to measure the time consumption but it's quick for me.
Here are some pros and cons IMHO:
- .iterrows(): return index and row items in separate variables, but significantly slower
- .itertuples(): faster than .iterrows(), but return index together with row items, ir[0] is the index
- zip: quickest, but no access to index of the row
EDIT 2020/11/10
For what it is worth, here is an updated benchmark with some other alternatives (perf with MacBookPro 2,4 GHz Intel Core i9 8 cores 32 Go 2667 MHz DDR4)
import sys
import tqdm
import time
import pandas as pd
B = []
t = pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)})
for _ in tqdm.tqdm(range(10)):
C = []
A = time.time()
for i,r in t.iterrows():
C.append((r['a'], r['b']))
B.append({"method": "iterrows", "time": time.time()-A})
C = []
A = time.time()
for ir in t.itertuples():
C.append((ir[1], ir[2]))
B.append({"method": "itertuples", "time": time.time()-A})
C = []
A = time.time()
for r in zip(t['a'], t['b']):
C.append((r[0], r[1]))
B.append({"method": "zip", "time": time.time()-A})
C = []
A = time.time()
for r in zip(*t.to_dict("list").values()):
C.append((r[0], r[1]))
B.append({"method": "zip + to_dict('list')", "time": time.time()-A})
C = []
A = time.time()
for r in t.to_dict("records"):
C.append((r["a"], r["b"]))
B.append({"method": "to_dict('records')", "time": time.time()-A})
A = time.time()
t.agg(tuple, axis=1).tolist()
B.append({"method": "agg", "time": time.time()-A})
A = time.time()
t.apply(tuple, axis=1).tolist()
B.append({"method": "apply", "time": time.time()-A})
print(f'Python {sys.version} on {sys.platform}')
print(f"Pandas version {pd.__version__}")
print(
pd.DataFrame(B).groupby("method").agg(["mean", "std"]).xs("time", axis=1).sort_values("mean")
)
## Output
Python 3.7.9 (default, Oct 13 2020, 10:58:24)
[Clang 12.0.0 (clang-1200.0.32.2)] on darwin
Pandas version 1.1.4
mean std
method
zip + to_dict('list') 0.002353 0.000168
zip 0.003381 0.000250
itertuples 0.007659 0.000728
to_dict('records') 0.025838 0.001458
agg 0.066391 0.007044
apply 0.067753 0.006997
iterrows 0.647215 0.019600
df.apply()?unutbu, NumPy seems to support vectorized operations (The key to speed with NumPy arrays is to perform your operations on the whole array at once).iterrows(), which is 600x slower than the fastest technique, oritertuples(), which is 15x slower. So, consider moving the accepted answer to my answer, where I present the 1x and other techniques, and meticulously speed test them all.