I'm having a bit of trouble making a ParametricPlot from two curves, At fisrt I was having difficulty solving my systems of autonomous ODEs, but then finally got a way to solve it. However, I am now not able to figure out how to get the parametric plot.
solution[t_] =
With[{n = 1.5},
NDSolve[
{q'[t] ==
((q[t]^2)/3)*(3 - n)*x[t]^2 - ((q[t]^2)/3)*n*(y[t] - 1) - ((q[t]^2)/3) + (q[t]*x[t]/3)*(3 - n)*x[t]^2 - (q[t]*x[t]/3)*n*(y[t] - 1) + (q[t]*x[t]/3) + (1/3)*x[t]^2 - (1/3) + (1/3)*((n*y[t]/(n - 1))),
y'[t] ==
((2*y[t]*x[t]^2)/3)*(3 - n)*(x[t] + q[t]) + (2*x[t]*y[t]/3)*((n^2 - 2*n + 2)/(n - 1)) - (2*x[t]*y[t]/3)*n*y[t] + (2*q[t]*n*y[t]*((1 - y[t])/3)),
x'[t] ==
((x[t]^3)/3)*(3 - n)*(q[t] + x[t]) + ((x[t]^2)/3)*n*(2 - y[t]) - 5*((x[t]^2)/3) + (q[t]*x[t]/3)* n*(1 - y[t]) - (q[t]*x[t]) + (1/3)*((n*(n - 2)*y[t])/(n - 1)) - (1/3)*n + 2/3,
q[0] == -1.33, y[0] == 0.88, x[0] == 0.33},
{q[t], y[t], x[t]}, {t, 0, 10}]][[1, All, 2]]
Plot[solution[t], {t, 0, 10}]
I want to get a parametric plot of q[t] and y[t]. And eventually a 3D plot of q[t], y[t], x[t].
