0
$\begingroup$

Say given $B$ symmetric and tr $B=0$. Let $P_u$ be the projection onto the tangent plane attached to $u$, i.e., $ P_u=Id-u\otimes u$. Let $\sigma_2(M)$ be the second symmetric sum of eigenvalues of $M$, i.e., $\sigma_2(M)=\sum_{i<j} \lambda_i\lambda_j$ where $\lambda_i$'s are eigenvalues of $M$.

I think $\sigma_2(P_uBP_u)$ can be positive or negative. But what can we tell about the integral over the sphere of this quantity $$ \int_{S^{n-1}} \sigma_2(P_uBP_u) du ?$$ Is it positive or negative or 0?

Could anyone offer some clue? many thanks!

$\endgroup$
1
  • $\begingroup$ @user1551 You'r right. I reedited the question. No need to introduce f, but it maybe worth to mention that $P_uBP_u$ comes from $ \nabla^2 f + f $. $\endgroup$ Commented Jul 13 at 12:50

1 Answer 1

2
$\begingroup$

Let $k=\int_{S^{n-1}}du=\dfrac{2\pi^{n/2}}{\Gamma(n/2)}$ and $\Pi=I-P_u=uu^T$. Then \begin{align*} \sum_{i<j}\lambda_i\lambda_j &=\frac12\left[\left(\operatorname{tr}(M)\right)^2-\operatorname{tr}(M^2)\right],\\ \left(\operatorname{tr}(P_uBP_u)\right)^2 &=\left(\operatorname{tr}(P_uB)\right)^2\\ &=\left(\operatorname{tr}(B)-\operatorname{tr}(\Pi B)\right)^2\\ &=\left(\operatorname{tr}(B)\right)^2 -2\operatorname{tr}(B)\operatorname{tr}(\Pi B) + \left(\operatorname{tr}(\Pi B)\right)^2,\\ &=\left(\operatorname{tr}(B)\right)^2 -2\operatorname{tr}(B)\operatorname{tr}(\Pi B) + (u^TBu)^2\\ &=\operatorname{tr}(B)\,\operatorname{tr}\big((I-2\Pi)B\big) + (u^TBu)^2,\\ \operatorname{tr}\left((P_uBP_u)^2\right) &=\operatorname{tr}(P_uBP_uB)\\ &=\operatorname{tr}\left((I-\Pi)B(I-\Pi)B\right)\\ &=\operatorname{tr}(B^2)-2\operatorname{tr}(\Pi B^2)+\operatorname{tr}(\Pi B\Pi B)\\ &=\operatorname{tr}(B^2)-2\operatorname{tr}(\Pi B^2)+(u^TBu)^2\\ &=\operatorname{tr}\big((I-2\Pi)B^2\big) + (u^TBu)^2,\\ \int_{S^{n-1}}\sigma_2(P_uBP_u)du &=\int_{S^{n-1}}\frac12\left[\left(\operatorname{tr}(P_uBP_u)\right)^2-\operatorname{tr}\left((P_uBP_u)^2\right)\right]du\\ &=\frac12\int_{S^{n-1}}\left[\operatorname{tr}(B)\,\operatorname{tr}\big((I-2\Pi)B\big) -\operatorname{tr}\big((I-2\Pi)B^2\big)\right]du\\ &=\frac12\left[\operatorname{tr}(B)\,\operatorname{tr}\left(\left(k-\frac{2k}{n}\right)B\right) -\operatorname{tr}\left(\left(k-\frac{2k}{n}\right)B^2\right)\right]\\ &=\frac{k}{2}\left(1-\frac{2}{n}\right)\left[ \left(\operatorname{tr}(B)\right)^2 -\operatorname{tr}(B^2)\right]\\ &=k\left(1-\frac{2}{n}\right)\sigma_2(B). \end{align*} (Note: we do not assume that $\operatorname{tr}(B)=0$ in the above.) It follows that $\int_{S^{n-1}}\sigma_2(P_uBP_u)du=0$ when $n=1$ (which is evident, because $P_u=0$) or $n=2$ (which again is evident, because $P_uBP_u$ has exactly two eigenvalues and at least one of them is zero).

When $n\ge3$, $\int_{S^{n-1}}\sigma_2(P_uBP_u)du$ has the same sign as $\sigma_2(B)$. In this case, if $\operatorname{tr}(B)=0$, then the integral is negative when $B\ne0$ and zero otherwise.

$\endgroup$
1
  • $\begingroup$ That's amazing! Thanks a lot. Let me digest a bit @_@ $\endgroup$ Commented Jul 13 at 14:37

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.