PostgreSQL Source Code git master
walsender.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * walsender.c
4 *
5 * The WAL sender process (walsender) is new as of Postgres 9.0. It takes
6 * care of sending XLOG from the primary server to a single recipient.
7 * (Note that there can be more than one walsender process concurrently.)
8 * It is started by the postmaster when the walreceiver of a standby server
9 * connects to the primary server and requests XLOG streaming replication.
10 *
11 * A walsender is similar to a regular backend, ie. there is a one-to-one
12 * relationship between a connection and a walsender process, but instead
13 * of processing SQL queries, it understands a small set of special
14 * replication-mode commands. The START_REPLICATION command begins streaming
15 * WAL to the client. While streaming, the walsender keeps reading XLOG
16 * records from the disk and sends them to the standby server over the
17 * COPY protocol, until either side ends the replication by exiting COPY
18 * mode (or until the connection is closed).
19 *
20 * Normal termination is by SIGTERM, which instructs the walsender to
21 * close the connection and exit(0) at the next convenient moment. Emergency
22 * termination is by SIGQUIT; like any backend, the walsender will simply
23 * abort and exit on SIGQUIT. A close of the connection and a FATAL error
24 * are treated as not a crash but approximately normal termination;
25 * the walsender will exit quickly without sending any more XLOG records.
26 *
27 * If the server is shut down, checkpointer sends us
28 * PROCSIG_WALSND_INIT_STOPPING after all regular backends have exited. If
29 * the backend is idle or runs an SQL query this causes the backend to
30 * shutdown, if logical replication is in progress all existing WAL records
31 * are processed followed by a shutdown. Otherwise this causes the walsender
32 * to switch to the "stopping" state. In this state, the walsender will reject
33 * any further replication commands. The checkpointer begins the shutdown
34 * checkpoint once all walsenders are confirmed as stopping. When the shutdown
35 * checkpoint finishes, the postmaster sends us SIGUSR2. This instructs
36 * walsender to send any outstanding WAL, including the shutdown checkpoint
37 * record, wait for it to be replicated to the standby, and then exit.
38 *
39 *
40 * Portions Copyright (c) 2010-2025, PostgreSQL Global Development Group
41 *
42 * IDENTIFICATION
43 * src/backend/replication/walsender.c
44 *
45 *-------------------------------------------------------------------------
46 */
47#include "postgres.h"
48
49#include <signal.h>
50#include <unistd.h>
51
52#include "access/timeline.h"
53#include "access/transam.h"
54#include "access/twophase.h"
55#include "access/xact.h"
57#include "access/xlogreader.h"
58#include "access/xlogrecovery.h"
59#include "access/xlogutils.h"
60#include "backup/basebackup.h"
62#include "catalog/pg_authid.h"
63#include "catalog/pg_type.h"
64#include "commands/defrem.h"
65#include "funcapi.h"
66#include "libpq/libpq.h"
67#include "libpq/pqformat.h"
68#include "libpq/protocol.h"
69#include "miscadmin.h"
70#include "nodes/replnodes.h"
71#include "pgstat.h"
73#include "replication/decode.h"
74#include "replication/logical.h"
76#include "replication/slot.h"
78#include "replication/syncrep.h"
83#include "storage/aio_subsys.h"
84#include "storage/fd.h"
85#include "storage/ipc.h"
86#include "storage/pmsignal.h"
87#include "storage/proc.h"
88#include "storage/procarray.h"
89#include "tcop/dest.h"
90#include "tcop/tcopprot.h"
91#include "utils/acl.h"
92#include "utils/builtins.h"
93#include "utils/guc.h"
94#include "utils/lsyscache.h"
95#include "utils/memutils.h"
96#include "utils/pg_lsn.h"
98#include "utils/ps_status.h"
99#include "utils/timeout.h"
100#include "utils/timestamp.h"
101
102/* Minimum interval used by walsender for stats flushes, in ms */
103#define WALSENDER_STATS_FLUSH_INTERVAL 1000
104
105/*
106 * Maximum data payload in a WAL data message. Must be >= XLOG_BLCKSZ.
107 *
108 * We don't have a good idea of what a good value would be; there's some
109 * overhead per message in both walsender and walreceiver, but on the other
110 * hand sending large batches makes walsender less responsive to signals
111 * because signals are checked only between messages. 128kB (with
112 * default 8k blocks) seems like a reasonable guess for now.
113 */
114#define MAX_SEND_SIZE (XLOG_BLCKSZ * 16)
115
116/* Array of WalSnds in shared memory */
118
119/* My slot in the shared memory array */
121
122/* Global state */
123bool am_walsender = false; /* Am I a walsender process? */
124bool am_cascading_walsender = false; /* Am I cascading WAL to another
125 * standby? */
126bool am_db_walsender = false; /* Connected to a database? */
127
128/* GUC variables */
129int max_wal_senders = 10; /* the maximum number of concurrent
130 * walsenders */
131int wal_sender_timeout = 60 * 1000; /* maximum time to send one WAL
132 * data message */
134
135/*
136 * State for WalSndWakeupRequest
137 */
138bool wake_wal_senders = false;
139
140/*
141 * xlogreader used for replication. Note that a WAL sender doing physical
142 * replication does not need xlogreader to read WAL, but it needs one to
143 * keep a state of its work.
144 */
146
147/*
148 * If the UPLOAD_MANIFEST command is used to provide a backup manifest in
149 * preparation for an incremental backup, uploaded_manifest will be point
150 * to an object containing information about its contexts, and
151 * uploaded_manifest_mcxt will point to the memory context that contains
152 * that object and all of its subordinate data. Otherwise, both values will
153 * be NULL.
154 */
157
158/*
159 * These variables keep track of the state of the timeline we're currently
160 * sending. sendTimeLine identifies the timeline. If sendTimeLineIsHistoric,
161 * the timeline is not the latest timeline on this server, and the server's
162 * history forked off from that timeline at sendTimeLineValidUpto.
163 */
166static bool sendTimeLineIsHistoric = false;
168
169/*
170 * How far have we sent WAL already? This is also advertised in
171 * MyWalSnd->sentPtr. (Actually, this is the next WAL location to send.)
172 */
174
175/* Buffers for constructing outgoing messages and processing reply messages. */
179
180/* Timestamp of last ProcessRepliesIfAny(). */
182
183/*
184 * Timestamp of last ProcessRepliesIfAny() that saw a reply from the
185 * standby. Set to 0 if wal_sender_timeout doesn't need to be active.
186 */
188
189/* Have we sent a heartbeat message asking for reply, since last reply? */
190static bool waiting_for_ping_response = false;
191
192/*
193 * While streaming WAL in Copy mode, streamingDoneSending is set to true
194 * after we have sent CopyDone. We should not send any more CopyData messages
195 * after that. streamingDoneReceiving is set to true when we receive CopyDone
196 * from the other end. When both become true, it's time to exit Copy mode.
197 */
200
201/* Are we there yet? */
202static bool WalSndCaughtUp = false;
203
204/* Flags set by signal handlers for later service in main loop */
205static volatile sig_atomic_t got_SIGUSR2 = false;
206static volatile sig_atomic_t got_STOPPING = false;
207
208/*
209 * This is set while we are streaming. When not set
210 * PROCSIG_WALSND_INIT_STOPPING signal will be handled like SIGTERM. When set,
211 * the main loop is responsible for checking got_STOPPING and terminating when
212 * it's set (after streaming any remaining WAL).
213 */
214static volatile sig_atomic_t replication_active = false;
215
217
218/* A sample associating a WAL location with the time it was written. */
219typedef struct
220{
224
225/* The size of our buffer of time samples. */
226#define LAG_TRACKER_BUFFER_SIZE 8192
227
228/* A mechanism for tracking replication lag. */
229typedef struct
230{
234 int read_heads[NUM_SYNC_REP_WAIT_MODE];
236
237 /*
238 * Overflow entries for read heads that collide with the write head.
239 *
240 * When the cyclic buffer fills (write head is about to collide with a
241 * read head), we save that read head's current sample here and mark it as
242 * using overflow (read_heads[i] = -1). This allows the write head to
243 * continue advancing while the overflowed mode continues lag computation
244 * using the saved sample.
245 *
246 * Once the standby's reported LSN advances past the overflow entry's LSN,
247 * we transition back to normal buffer-based tracking.
248 */
250} LagTracker;
251
253
254/* Signal handlers */
256
257/* Prototypes for private functions */
258typedef void (*WalSndSendDataCallback) (void);
259static void WalSndLoop(WalSndSendDataCallback send_data);
260static void InitWalSenderSlot(void);
261static void WalSndKill(int code, Datum arg);
262pg_noreturn static void WalSndShutdown(void);
263static void XLogSendPhysical(void);
264static void XLogSendLogical(void);
265static void WalSndDone(WalSndSendDataCallback send_data);
266static void IdentifySystem(void);
267static void UploadManifest(void);
268static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset,
273static void StartReplication(StartReplicationCmd *cmd);
275static void ProcessStandbyMessage(void);
276static void ProcessStandbyReplyMessage(void);
277static void ProcessStandbyHSFeedbackMessage(void);
278static void ProcessStandbyPSRequestMessage(void);
279static void ProcessRepliesIfAny(void);
280static void ProcessPendingWrites(void);
281static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr);
282static void WalSndKeepaliveIfNecessary(void);
283static void WalSndCheckTimeOut(void);
285static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event);
286static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
287static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write);
289 bool skipped_xact);
291static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time);
292static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now);
294
295static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo,
296 TimeLineID *tli_p);
297
298
299/* Initialize walsender process before entering the main command loop */
300void
302{
304
305 /* Create a per-walsender data structure in shared memory */
307
308 /* need resource owner for e.g. basebackups */
310
311 /*
312 * Let postmaster know that we're a WAL sender. Once we've declared us as
313 * a WAL sender process, postmaster will let us outlive the bgwriter and
314 * kill us last in the shutdown sequence, so we get a chance to stream all
315 * remaining WAL at shutdown, including the shutdown checkpoint. Note that
316 * there's no going back, and we mustn't write any WAL records after this.
317 */
320
321 /*
322 * If the client didn't specify a database to connect to, show in PGPROC
323 * that our advertised xmin should affect vacuum horizons in all
324 * databases. This allows physical replication clients to send hot
325 * standby feedback that will delay vacuum cleanup in all databases.
326 */
328 {
330 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
333 LWLockRelease(ProcArrayLock);
334 }
335
336 /* Initialize empty timestamp buffer for lag tracking. */
338}
339
340/*
341 * Clean up after an error.
342 *
343 * WAL sender processes don't use transactions like regular backends do.
344 * This function does any cleanup required after an error in a WAL sender
345 * process, similar to what transaction abort does in a regular backend.
346 */
347void
349{
354
355 if (xlogreader != NULL && xlogreader->seg.ws_file >= 0)
357
358 if (MyReplicationSlot != NULL)
360
362
363 replication_active = false;
364
365 /*
366 * If there is a transaction in progress, it will clean up our
367 * ResourceOwner, but if a replication command set up a resource owner
368 * without a transaction, we've got to clean that up now.
369 */
372
374 proc_exit(0);
375
376 /* Revert back to startup state */
378}
379
380/*
381 * Handle a client's connection abort in an orderly manner.
382 */
383static void
385{
386 /*
387 * Reset whereToSendOutput to prevent ereport from attempting to send any
388 * more messages to the standby.
389 */
392
393 proc_exit(0);
394 abort(); /* keep the compiler quiet */
395}
396
397/*
398 * Handle the IDENTIFY_SYSTEM command.
399 */
400static void
402{
403 char sysid[32];
404 char xloc[MAXFNAMELEN];
405 XLogRecPtr logptr;
406 char *dbname = NULL;
408 TupOutputState *tstate;
409 TupleDesc tupdesc;
410 Datum values[4];
411 bool nulls[4] = {0};
412 TimeLineID currTLI;
413
414 /*
415 * Reply with a result set with one row, four columns. First col is system
416 * ID, second is timeline ID, third is current xlog location and the
417 * fourth contains the database name if we are connected to one.
418 */
419
420 snprintf(sysid, sizeof(sysid), UINT64_FORMAT,
422
425 logptr = GetStandbyFlushRecPtr(&currTLI);
426 else
427 logptr = GetFlushRecPtr(&currTLI);
428
429 snprintf(xloc, sizeof(xloc), "%X/%08X", LSN_FORMAT_ARGS(logptr));
430
432 {
434
435 /* syscache access needs a transaction env. */
438 /* copy dbname out of TX context */
441 }
442
444
445 /* need a tuple descriptor representing four columns */
446 tupdesc = CreateTemplateTupleDesc(4);
447 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "systemid",
448 TEXTOID, -1, 0);
449 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "timeline",
450 INT8OID, -1, 0);
451 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "xlogpos",
452 TEXTOID, -1, 0);
453 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "dbname",
454 TEXTOID, -1, 0);
455
456 /* prepare for projection of tuples */
457 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
458
459 /* column 1: system identifier */
460 values[0] = CStringGetTextDatum(sysid);
461
462 /* column 2: timeline */
463 values[1] = Int64GetDatum(currTLI);
464
465 /* column 3: wal location */
466 values[2] = CStringGetTextDatum(xloc);
467
468 /* column 4: database name, or NULL if none */
469 if (dbname)
471 else
472 nulls[3] = true;
473
474 /* send it to dest */
475 do_tup_output(tstate, values, nulls);
476
477 end_tup_output(tstate);
478}
479
480/* Handle READ_REPLICATION_SLOT command */
481static void
483{
484#define READ_REPLICATION_SLOT_COLS 3
485 ReplicationSlot *slot;
487 TupOutputState *tstate;
488 TupleDesc tupdesc;
490 bool nulls[READ_REPLICATION_SLOT_COLS];
491
493 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_type",
494 TEXTOID, -1, 0);
495 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "restart_lsn",
496 TEXTOID, -1, 0);
497 /* TimeLineID is unsigned, so int4 is not wide enough. */
498 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "restart_tli",
499 INT8OID, -1, 0);
500
501 memset(nulls, true, READ_REPLICATION_SLOT_COLS * sizeof(bool));
502
503 LWLockAcquire(ReplicationSlotControlLock, LW_SHARED);
504 slot = SearchNamedReplicationSlot(cmd->slotname, false);
505 if (slot == NULL || !slot->in_use)
506 {
507 LWLockRelease(ReplicationSlotControlLock);
508 }
509 else
510 {
511 ReplicationSlot slot_contents;
512 int i = 0;
513
514 /* Copy slot contents while holding spinlock */
515 SpinLockAcquire(&slot->mutex);
516 slot_contents = *slot;
517 SpinLockRelease(&slot->mutex);
518 LWLockRelease(ReplicationSlotControlLock);
519
520 if (OidIsValid(slot_contents.data.database))
522 errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
523 errmsg("cannot use %s with a logical replication slot",
524 "READ_REPLICATION_SLOT"));
525
526 /* slot type */
527 values[i] = CStringGetTextDatum("physical");
528 nulls[i] = false;
529 i++;
530
531 /* start LSN */
532 if (XLogRecPtrIsValid(slot_contents.data.restart_lsn))
533 {
534 char xloc[64];
535
536 snprintf(xloc, sizeof(xloc), "%X/%08X",
537 LSN_FORMAT_ARGS(slot_contents.data.restart_lsn));
539 nulls[i] = false;
540 }
541 i++;
542
543 /* timeline this WAL was produced on */
544 if (XLogRecPtrIsValid(slot_contents.data.restart_lsn))
545 {
546 TimeLineID slots_position_timeline;
547 TimeLineID current_timeline;
548 List *timeline_history = NIL;
549
550 /*
551 * While in recovery, use as timeline the currently-replaying one
552 * to get the LSN position's history.
553 */
554 if (RecoveryInProgress())
555 (void) GetXLogReplayRecPtr(&current_timeline);
556 else
557 current_timeline = GetWALInsertionTimeLine();
558
559 timeline_history = readTimeLineHistory(current_timeline);
560 slots_position_timeline = tliOfPointInHistory(slot_contents.data.restart_lsn,
561 timeline_history);
562 values[i] = Int64GetDatum((int64) slots_position_timeline);
563 nulls[i] = false;
564 }
565 i++;
566
568 }
569
571 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
572 do_tup_output(tstate, values, nulls);
573 end_tup_output(tstate);
574}
575
576
577/*
578 * Handle TIMELINE_HISTORY command.
579 */
580static void
582{
584 TupleDesc tupdesc;
586 char histfname[MAXFNAMELEN];
587 char path[MAXPGPATH];
588 int fd;
589 off_t histfilelen;
590 off_t bytesleft;
591 Size len;
592
594
595 /*
596 * Reply with a result set with one row, and two columns. The first col is
597 * the name of the history file, 2nd is the contents.
598 */
599 tupdesc = CreateTemplateTupleDesc(2);
600 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "filename", TEXTOID, -1, 0);
601 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "content", TEXTOID, -1, 0);
602
603 TLHistoryFileName(histfname, cmd->timeline);
604 TLHistoryFilePath(path, cmd->timeline);
605
606 /* Send a RowDescription message */
607 dest->rStartup(dest, CMD_SELECT, tupdesc);
608
609 /* Send a DataRow message */
611 pq_sendint16(&buf, 2); /* # of columns */
612 len = strlen(histfname);
613 pq_sendint32(&buf, len); /* col1 len */
614 pq_sendbytes(&buf, histfname, len);
615
616 fd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
617 if (fd < 0)
620 errmsg("could not open file \"%s\": %m", path)));
621
622 /* Determine file length and send it to client */
623 histfilelen = lseek(fd, 0, SEEK_END);
624 if (histfilelen < 0)
627 errmsg("could not seek to end of file \"%s\": %m", path)));
628 if (lseek(fd, 0, SEEK_SET) != 0)
631 errmsg("could not seek to beginning of file \"%s\": %m", path)));
632
633 pq_sendint32(&buf, histfilelen); /* col2 len */
634
635 bytesleft = histfilelen;
636 while (bytesleft > 0)
637 {
638 PGAlignedBlock rbuf;
639 int nread;
640
641 pgstat_report_wait_start(WAIT_EVENT_WALSENDER_TIMELINE_HISTORY_READ);
642 nread = read(fd, rbuf.data, sizeof(rbuf));
644 if (nread < 0)
647 errmsg("could not read file \"%s\": %m",
648 path)));
649 else if (nread == 0)
652 errmsg("could not read file \"%s\": read %d of %zu",
653 path, nread, (Size) bytesleft)));
654
655 pq_sendbytes(&buf, rbuf.data, nread);
656 bytesleft -= nread;
657 }
658
659 if (CloseTransientFile(fd) != 0)
662 errmsg("could not close file \"%s\": %m", path)));
663
665}
666
667/*
668 * Handle UPLOAD_MANIFEST command.
669 */
670static void
672{
673 MemoryContext mcxt;
675 off_t offset = 0;
677
678 /*
679 * parsing the manifest will use the cryptohash stuff, which requires a
680 * resource owner
681 */
684 CurrentResourceOwner == NULL);
686
687 /* Prepare to read manifest data into a temporary context. */
689 "incremental backup information",
692
693 /* Send a CopyInResponse message */
695 pq_sendbyte(&buf, 0);
696 pq_sendint16(&buf, 0);
698 pq_flush();
699
700 /* Receive packets from client until done. */
701 while (HandleUploadManifestPacket(&buf, &offset, ib))
702 ;
703
704 /* Finish up manifest processing. */
706
707 /*
708 * Discard any old manifest information and arrange to preserve the new
709 * information we just got.
710 *
711 * We assume that MemoryContextDelete and MemoryContextSetParent won't
712 * fail, and thus we shouldn't end up bailing out of here in such a way as
713 * to leave dangling pointers.
714 */
715 if (uploaded_manifest_mcxt != NULL)
720
721 /* clean up the resource owner we created */
723}
724
725/*
726 * Process one packet received during the handling of an UPLOAD_MANIFEST
727 * operation.
728 *
729 * 'buf' is scratch space. This function expects it to be initialized, doesn't
730 * care what the current contents are, and may override them with completely
731 * new contents.
732 *
733 * The return value is true if the caller should continue processing
734 * additional packets and false if the UPLOAD_MANIFEST operation is complete.
735 */
736static bool
739{
740 int mtype;
741 int maxmsglen;
742
744
746 mtype = pq_getbyte();
747 if (mtype == EOF)
749 (errcode(ERRCODE_CONNECTION_FAILURE),
750 errmsg("unexpected EOF on client connection with an open transaction")));
751
752 switch (mtype)
753 {
754 case PqMsg_CopyData:
755 maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
756 break;
757 case PqMsg_CopyDone:
758 case PqMsg_CopyFail:
759 case PqMsg_Flush:
760 case PqMsg_Sync:
761 maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
762 break;
763 default:
765 (errcode(ERRCODE_PROTOCOL_VIOLATION),
766 errmsg("unexpected message type 0x%02X during COPY from stdin",
767 mtype)));
768 maxmsglen = 0; /* keep compiler quiet */
769 break;
770 }
771
772 /* Now collect the message body */
773 if (pq_getmessage(buf, maxmsglen))
775 (errcode(ERRCODE_CONNECTION_FAILURE),
776 errmsg("unexpected EOF on client connection with an open transaction")));
778
779 /* Process the message */
780 switch (mtype)
781 {
782 case PqMsg_CopyData:
783 AppendIncrementalManifestData(ib, buf->data, buf->len);
784 return true;
785
786 case PqMsg_CopyDone:
787 return false;
788
789 case PqMsg_Sync:
790 case PqMsg_Flush:
791 /* Ignore these while in CopyOut mode as we do elsewhere. */
792 return true;
793
794 case PqMsg_CopyFail:
796 (errcode(ERRCODE_QUERY_CANCELED),
797 errmsg("COPY from stdin failed: %s",
799 }
800
801 /* Not reached. */
802 Assert(false);
803 return false;
804}
805
806/*
807 * Handle START_REPLICATION command.
808 *
809 * At the moment, this never returns, but an ereport(ERROR) will take us back
810 * to the main loop.
811 */
812static void
814{
816 XLogRecPtr FlushPtr;
817 TimeLineID FlushTLI;
818
819 /* create xlogreader for physical replication */
820 xlogreader =
822 XL_ROUTINE(.segment_open = WalSndSegmentOpen,
823 .segment_close = wal_segment_close),
824 NULL);
825
826 if (!xlogreader)
828 (errcode(ERRCODE_OUT_OF_MEMORY),
829 errmsg("out of memory"),
830 errdetail("Failed while allocating a WAL reading processor.")));
831
832 /*
833 * We assume here that we're logging enough information in the WAL for
834 * log-shipping, since this is checked in PostmasterMain().
835 *
836 * NOTE: wal_level can only change at shutdown, so in most cases it is
837 * difficult for there to be WAL data that we can still see that was
838 * written at wal_level='minimal'.
839 */
840
841 if (cmd->slotname)
842 {
843 ReplicationSlotAcquire(cmd->slotname, true, true);
846 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
847 errmsg("cannot use a logical replication slot for physical replication")));
848
849 /*
850 * We don't need to verify the slot's restart_lsn here; instead we
851 * rely on the caller requesting the starting point to use. If the
852 * WAL segment doesn't exist, we'll fail later.
853 */
854 }
855
856 /*
857 * Select the timeline. If it was given explicitly by the client, use
858 * that. Otherwise use the timeline of the last replayed record.
859 */
862 FlushPtr = GetStandbyFlushRecPtr(&FlushTLI);
863 else
864 FlushPtr = GetFlushRecPtr(&FlushTLI);
865
866 if (cmd->timeline != 0)
867 {
868 XLogRecPtr switchpoint;
869
870 sendTimeLine = cmd->timeline;
871 if (sendTimeLine == FlushTLI)
872 {
875 }
876 else
877 {
878 List *timeLineHistory;
879
881
882 /*
883 * Check that the timeline the client requested exists, and the
884 * requested start location is on that timeline.
885 */
886 timeLineHistory = readTimeLineHistory(FlushTLI);
887 switchpoint = tliSwitchPoint(cmd->timeline, timeLineHistory,
889 list_free_deep(timeLineHistory);
890
891 /*
892 * Found the requested timeline in the history. Check that
893 * requested startpoint is on that timeline in our history.
894 *
895 * This is quite loose on purpose. We only check that we didn't
896 * fork off the requested timeline before the switchpoint. We
897 * don't check that we switched *to* it before the requested
898 * starting point. This is because the client can legitimately
899 * request to start replication from the beginning of the WAL
900 * segment that contains switchpoint, but on the new timeline, so
901 * that it doesn't end up with a partial segment. If you ask for
902 * too old a starting point, you'll get an error later when we
903 * fail to find the requested WAL segment in pg_wal.
904 *
905 * XXX: we could be more strict here and only allow a startpoint
906 * that's older than the switchpoint, if it's still in the same
907 * WAL segment.
908 */
909 if (XLogRecPtrIsValid(switchpoint) &&
910 switchpoint < cmd->startpoint)
911 {
913 errmsg("requested starting point %X/%08X on timeline %u is not in this server's history",
915 cmd->timeline),
916 errdetail("This server's history forked from timeline %u at %X/%08X.",
917 cmd->timeline,
918 LSN_FORMAT_ARGS(switchpoint)));
919 }
920 sendTimeLineValidUpto = switchpoint;
921 }
922 }
923 else
924 {
925 sendTimeLine = FlushTLI;
928 }
929
931
932 /* If there is nothing to stream, don't even enter COPY mode */
934 {
935 /*
936 * When we first start replication the standby will be behind the
937 * primary. For some applications, for example synchronous
938 * replication, it is important to have a clear state for this initial
939 * catchup mode, so we can trigger actions when we change streaming
940 * state later. We may stay in this state for a long time, which is
941 * exactly why we want to be able to monitor whether or not we are
942 * still here.
943 */
945
946 /* Send a CopyBothResponse message, and start streaming */
948 pq_sendbyte(&buf, 0);
949 pq_sendint16(&buf, 0);
951 pq_flush();
952
953 /*
954 * Don't allow a request to stream from a future point in WAL that
955 * hasn't been flushed to disk in this server yet.
956 */
957 if (FlushPtr < cmd->startpoint)
958 {
960 errmsg("requested starting point %X/%08X is ahead of the WAL flush position of this server %X/%08X",
962 LSN_FORMAT_ARGS(FlushPtr)));
963 }
964
965 /* Start streaming from the requested point */
966 sentPtr = cmd->startpoint;
967
968 /* Initialize shared memory status, too */
972
974
975 /* Main loop of walsender */
976 replication_active = true;
977
979
980 replication_active = false;
981 if (got_STOPPING)
982 proc_exit(0);
984
986 }
987
988 if (cmd->slotname)
990
991 /*
992 * Copy is finished now. Send a single-row result set indicating the next
993 * timeline.
994 */
996 {
997 char startpos_str[8 + 1 + 8 + 1];
999 TupOutputState *tstate;
1000 TupleDesc tupdesc;
1001 Datum values[2];
1002 bool nulls[2] = {0};
1003
1004 snprintf(startpos_str, sizeof(startpos_str), "%X/%08X",
1006
1008
1009 /*
1010 * Need a tuple descriptor representing two columns. int8 may seem
1011 * like a surprising data type for this, but in theory int4 would not
1012 * be wide enough for this, as TimeLineID is unsigned.
1013 */
1014 tupdesc = CreateTemplateTupleDesc(2);
1015 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "next_tli",
1016 INT8OID, -1, 0);
1017 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "next_tli_startpos",
1018 TEXTOID, -1, 0);
1019
1020 /* prepare for projection of tuple */
1021 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1022
1024 values[1] = CStringGetTextDatum(startpos_str);
1025
1026 /* send it to dest */
1027 do_tup_output(tstate, values, nulls);
1028
1029 end_tup_output(tstate);
1030 }
1031
1032 /* Send CommandComplete message */
1033 EndReplicationCommand("START_STREAMING");
1034}
1035
1036/*
1037 * XLogReaderRoutine->page_read callback for logical decoding contexts, as a
1038 * walsender process.
1039 *
1040 * Inside the walsender we can do better than read_local_xlog_page,
1041 * which has to do a plain sleep/busy loop, because the walsender's latch gets
1042 * set every time WAL is flushed.
1043 */
1044static int
1046 XLogRecPtr targetRecPtr, char *cur_page)
1047{
1048 XLogRecPtr flushptr;
1049 int count;
1050 WALReadError errinfo;
1051 XLogSegNo segno;
1052 TimeLineID currTLI;
1053
1054 /*
1055 * Make sure we have enough WAL available before retrieving the current
1056 * timeline.
1057 */
1058 flushptr = WalSndWaitForWal(targetPagePtr + reqLen);
1059
1060 /* Fail if not enough (implies we are going to shut down) */
1061 if (flushptr < targetPagePtr + reqLen)
1062 return -1;
1063
1064 /*
1065 * Since logical decoding is also permitted on a standby server, we need
1066 * to check if the server is in recovery to decide how to get the current
1067 * timeline ID (so that it also covers the promotion or timeline change
1068 * cases). We must determine am_cascading_walsender after waiting for the
1069 * required WAL so that it is correct when the walsender wakes up after a
1070 * promotion.
1071 */
1073
1075 GetXLogReplayRecPtr(&currTLI);
1076 else
1077 currTLI = GetWALInsertionTimeLine();
1078
1079 XLogReadDetermineTimeline(state, targetPagePtr, reqLen, currTLI);
1080 sendTimeLineIsHistoric = (state->currTLI != currTLI);
1081 sendTimeLine = state->currTLI;
1082 sendTimeLineValidUpto = state->currTLIValidUntil;
1083 sendTimeLineNextTLI = state->nextTLI;
1084
1085 if (targetPagePtr + XLOG_BLCKSZ <= flushptr)
1086 count = XLOG_BLCKSZ; /* more than one block available */
1087 else
1088 count = flushptr - targetPagePtr; /* part of the page available */
1089
1090 /* now actually read the data, we know it's there */
1091 if (!WALRead(state,
1092 cur_page,
1093 targetPagePtr,
1094 count,
1095 currTLI, /* Pass the current TLI because only
1096 * WalSndSegmentOpen controls whether new TLI
1097 * is needed. */
1098 &errinfo))
1099 WALReadRaiseError(&errinfo);
1100
1101 /*
1102 * After reading into the buffer, check that what we read was valid. We do
1103 * this after reading, because even though the segment was present when we
1104 * opened it, it might get recycled or removed while we read it. The
1105 * read() succeeds in that case, but the data we tried to read might
1106 * already have been overwritten with new WAL records.
1107 */
1108 XLByteToSeg(targetPagePtr, segno, state->segcxt.ws_segsize);
1109 CheckXLogRemoved(segno, state->seg.ws_tli);
1110
1111 return count;
1112}
1113
1114/*
1115 * Process extra options given to CREATE_REPLICATION_SLOT.
1116 */
1117static void
1119 bool *reserve_wal,
1120 CRSSnapshotAction *snapshot_action,
1121 bool *two_phase, bool *failover)
1122{
1123 ListCell *lc;
1124 bool snapshot_action_given = false;
1125 bool reserve_wal_given = false;
1126 bool two_phase_given = false;
1127 bool failover_given = false;
1128
1129 /* Parse options */
1130 foreach(lc, cmd->options)
1131 {
1132 DefElem *defel = (DefElem *) lfirst(lc);
1133
1134 if (strcmp(defel->defname, "snapshot") == 0)
1135 {
1136 char *action;
1137
1138 if (snapshot_action_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1139 ereport(ERROR,
1140 (errcode(ERRCODE_SYNTAX_ERROR),
1141 errmsg("conflicting or redundant options")));
1142
1143 action = defGetString(defel);
1144 snapshot_action_given = true;
1145
1146 if (strcmp(action, "export") == 0)
1147 *snapshot_action = CRS_EXPORT_SNAPSHOT;
1148 else if (strcmp(action, "nothing") == 0)
1149 *snapshot_action = CRS_NOEXPORT_SNAPSHOT;
1150 else if (strcmp(action, "use") == 0)
1151 *snapshot_action = CRS_USE_SNAPSHOT;
1152 else
1153 ereport(ERROR,
1154 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1155 errmsg("unrecognized value for CREATE_REPLICATION_SLOT option \"%s\": \"%s\"",
1156 defel->defname, action)));
1157 }
1158 else if (strcmp(defel->defname, "reserve_wal") == 0)
1159 {
1160 if (reserve_wal_given || cmd->kind != REPLICATION_KIND_PHYSICAL)
1161 ereport(ERROR,
1162 (errcode(ERRCODE_SYNTAX_ERROR),
1163 errmsg("conflicting or redundant options")));
1164
1165 reserve_wal_given = true;
1166 *reserve_wal = defGetBoolean(defel);
1167 }
1168 else if (strcmp(defel->defname, "two_phase") == 0)
1169 {
1170 if (two_phase_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1171 ereport(ERROR,
1172 (errcode(ERRCODE_SYNTAX_ERROR),
1173 errmsg("conflicting or redundant options")));
1174 two_phase_given = true;
1175 *two_phase = defGetBoolean(defel);
1176 }
1177 else if (strcmp(defel->defname, "failover") == 0)
1178 {
1179 if (failover_given || cmd->kind != REPLICATION_KIND_LOGICAL)
1180 ereport(ERROR,
1181 (errcode(ERRCODE_SYNTAX_ERROR),
1182 errmsg("conflicting or redundant options")));
1183 failover_given = true;
1184 *failover = defGetBoolean(defel);
1185 }
1186 else
1187 elog(ERROR, "unrecognized option: %s", defel->defname);
1188 }
1189}
1190
1191/*
1192 * Create a new replication slot.
1193 */
1194static void
1196{
1197 const char *snapshot_name = NULL;
1198 char xloc[MAXFNAMELEN];
1199 char *slot_name;
1200 bool reserve_wal = false;
1201 bool two_phase = false;
1202 bool failover = false;
1203 CRSSnapshotAction snapshot_action = CRS_EXPORT_SNAPSHOT;
1205 TupOutputState *tstate;
1206 TupleDesc tupdesc;
1207 Datum values[4];
1208 bool nulls[4] = {0};
1209
1211
1212 parseCreateReplSlotOptions(cmd, &reserve_wal, &snapshot_action, &two_phase,
1213 &failover);
1214
1215 if (cmd->kind == REPLICATION_KIND_PHYSICAL)
1216 {
1217 ReplicationSlotCreate(cmd->slotname, false,
1219 false, false, false);
1220
1221 if (reserve_wal)
1222 {
1224
1226
1227 /* Write this slot to disk if it's a permanent one. */
1228 if (!cmd->temporary)
1230 }
1231 }
1232 else
1233 {
1235 bool need_full_snapshot = false;
1236
1238
1240
1241 /*
1242 * Initially create persistent slot as ephemeral - that allows us to
1243 * nicely handle errors during initialization because it'll get
1244 * dropped if this transaction fails. We'll make it persistent at the
1245 * end. Temporary slots can be created as temporary from beginning as
1246 * they get dropped on error as well.
1247 */
1250 two_phase, failover, false);
1251
1252 /*
1253 * Do options check early so that we can bail before calling the
1254 * DecodingContextFindStartpoint which can take long time.
1255 */
1256 if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1257 {
1258 if (IsTransactionBlock())
1259 ereport(ERROR,
1260 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1261 (errmsg("%s must not be called inside a transaction",
1262 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'export')")));
1263
1264 need_full_snapshot = true;
1265 }
1266 else if (snapshot_action == CRS_USE_SNAPSHOT)
1267 {
1268 if (!IsTransactionBlock())
1269 ereport(ERROR,
1270 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1271 (errmsg("%s must be called inside a transaction",
1272 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1273
1275 ereport(ERROR,
1276 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1277 (errmsg("%s must be called in REPEATABLE READ isolation mode transaction",
1278 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1279 if (!XactReadOnly)
1280 ereport(ERROR,
1281 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1282 (errmsg("%s must be called in a read-only transaction",
1283 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1284
1285 if (FirstSnapshotSet)
1286 ereport(ERROR,
1287 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1288 (errmsg("%s must be called before any query",
1289 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1290
1291 if (IsSubTransaction())
1292 ereport(ERROR,
1293 /*- translator: %s is a CREATE_REPLICATION_SLOT statement */
1294 (errmsg("%s must not be called in a subtransaction",
1295 "CREATE_REPLICATION_SLOT ... (SNAPSHOT 'use')")));
1296
1297 need_full_snapshot = true;
1298 }
1299
1300 ctx = CreateInitDecodingContext(cmd->plugin, NIL, need_full_snapshot,
1303 .segment_open = WalSndSegmentOpen,
1304 .segment_close = wal_segment_close),
1307
1308 /*
1309 * Signal that we don't need the timeout mechanism. We're just
1310 * creating the replication slot and don't yet accept feedback
1311 * messages or send keepalives. As we possibly need to wait for
1312 * further WAL the walsender would otherwise possibly be killed too
1313 * soon.
1314 */
1316
1317 /* build initial snapshot, might take a while */
1319
1320 /*
1321 * Export or use the snapshot if we've been asked to do so.
1322 *
1323 * NB. We will convert the snapbuild.c kind of snapshot to normal
1324 * snapshot when doing this.
1325 */
1326 if (snapshot_action == CRS_EXPORT_SNAPSHOT)
1327 {
1328 snapshot_name = SnapBuildExportSnapshot(ctx->snapshot_builder);
1329 }
1330 else if (snapshot_action == CRS_USE_SNAPSHOT)
1331 {
1332 Snapshot snap;
1333
1336 }
1337
1338 /* don't need the decoding context anymore */
1340
1341 if (!cmd->temporary)
1343 }
1344
1345 snprintf(xloc, sizeof(xloc), "%X/%08X",
1347
1349
1350 /*----------
1351 * Need a tuple descriptor representing four columns:
1352 * - first field: the slot name
1353 * - second field: LSN at which we became consistent
1354 * - third field: exported snapshot's name
1355 * - fourth field: output plugin
1356 */
1357 tupdesc = CreateTemplateTupleDesc(4);
1358 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 1, "slot_name",
1359 TEXTOID, -1, 0);
1360 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 2, "consistent_point",
1361 TEXTOID, -1, 0);
1362 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 3, "snapshot_name",
1363 TEXTOID, -1, 0);
1364 TupleDescInitBuiltinEntry(tupdesc, (AttrNumber) 4, "output_plugin",
1365 TEXTOID, -1, 0);
1366
1367 /* prepare for projection of tuples */
1368 tstate = begin_tup_output_tupdesc(dest, tupdesc, &TTSOpsVirtual);
1369
1370 /* slot_name */
1371 slot_name = NameStr(MyReplicationSlot->data.name);
1372 values[0] = CStringGetTextDatum(slot_name);
1373
1374 /* consistent wal location */
1375 values[1] = CStringGetTextDatum(xloc);
1376
1377 /* snapshot name, or NULL if none */
1378 if (snapshot_name != NULL)
1379 values[2] = CStringGetTextDatum(snapshot_name);
1380 else
1381 nulls[2] = true;
1382
1383 /* plugin, or NULL if none */
1384 if (cmd->plugin != NULL)
1386 else
1387 nulls[3] = true;
1388
1389 /* send it to dest */
1390 do_tup_output(tstate, values, nulls);
1391 end_tup_output(tstate);
1392
1394}
1395
1396/*
1397 * Get rid of a replication slot that is no longer wanted.
1398 */
1399static void
1401{
1402 ReplicationSlotDrop(cmd->slotname, !cmd->wait);
1403}
1404
1405/*
1406 * Change the definition of a replication slot.
1407 */
1408static void
1410{
1411 bool failover_given = false;
1412 bool two_phase_given = false;
1413 bool failover;
1414 bool two_phase;
1415
1416 /* Parse options */
1417 foreach_ptr(DefElem, defel, cmd->options)
1418 {
1419 if (strcmp(defel->defname, "failover") == 0)
1420 {
1421 if (failover_given)
1422 ereport(ERROR,
1423 (errcode(ERRCODE_SYNTAX_ERROR),
1424 errmsg("conflicting or redundant options")));
1425 failover_given = true;
1426 failover = defGetBoolean(defel);
1427 }
1428 else if (strcmp(defel->defname, "two_phase") == 0)
1429 {
1430 if (two_phase_given)
1431 ereport(ERROR,
1432 (errcode(ERRCODE_SYNTAX_ERROR),
1433 errmsg("conflicting or redundant options")));
1434 two_phase_given = true;
1435 two_phase = defGetBoolean(defel);
1436 }
1437 else
1438 elog(ERROR, "unrecognized option: %s", defel->defname);
1439 }
1440
1442 failover_given ? &failover : NULL,
1443 two_phase_given ? &two_phase : NULL);
1444}
1445
1446/*
1447 * Load previously initiated logical slot and prepare for sending data (via
1448 * WalSndLoop).
1449 */
1450static void
1452{
1454 QueryCompletion qc;
1455
1456 /* make sure that our requirements are still fulfilled */
1458
1460
1461 ReplicationSlotAcquire(cmd->slotname, true, true);
1462
1463 /*
1464 * Force a disconnect, so that the decoding code doesn't need to care
1465 * about an eventual switch from running in recovery, to running in a
1466 * normal environment. Client code is expected to handle reconnects.
1467 */
1469 {
1470 ereport(LOG,
1471 (errmsg("terminating walsender process after promotion")));
1472 got_STOPPING = true;
1473 }
1474
1475 /*
1476 * Create our decoding context, making it start at the previously ack'ed
1477 * position.
1478 *
1479 * Do this before sending a CopyBothResponse message, so that any errors
1480 * are reported early.
1481 */
1483 CreateDecodingContext(cmd->startpoint, cmd->options, false,
1485 .segment_open = WalSndSegmentOpen,
1486 .segment_close = wal_segment_close),
1490
1492
1493 /* Send a CopyBothResponse message, and start streaming */
1495 pq_sendbyte(&buf, 0);
1496 pq_sendint16(&buf, 0);
1498 pq_flush();
1499
1500 /* Start reading WAL from the oldest required WAL. */
1503
1504 /*
1505 * Report the location after which we'll send out further commits as the
1506 * current sentPtr.
1507 */
1509
1510 /* Also update the sent position status in shared memory */
1514
1515 replication_active = true;
1516
1518
1519 /* Main loop of walsender */
1521
1524
1525 replication_active = false;
1526 if (got_STOPPING)
1527 proc_exit(0);
1529
1530 /* Get out of COPY mode (CommandComplete). */
1531 SetQueryCompletion(&qc, CMDTAG_COPY, 0);
1532 EndCommand(&qc, DestRemote, false);
1533}
1534
1535/*
1536 * LogicalDecodingContext 'prepare_write' callback.
1537 *
1538 * Prepare a write into a StringInfo.
1539 *
1540 * Don't do anything lasting in here, it's quite possible that nothing will be done
1541 * with the data.
1542 */
1543static void
1545{
1546 /* can't have sync rep confused by sending the same LSN several times */
1547 if (!last_write)
1548 lsn = InvalidXLogRecPtr;
1549
1550 resetStringInfo(ctx->out);
1551
1553 pq_sendint64(ctx->out, lsn); /* dataStart */
1554 pq_sendint64(ctx->out, lsn); /* walEnd */
1555
1556 /*
1557 * Fill out the sendtime later, just as it's done in XLogSendPhysical, but
1558 * reserve space here.
1559 */
1560 pq_sendint64(ctx->out, 0); /* sendtime */
1561}
1562
1563/*
1564 * LogicalDecodingContext 'write' callback.
1565 *
1566 * Actually write out data previously prepared by WalSndPrepareWrite out to
1567 * the network. Take as long as needed, but process replies from the other
1568 * side and check timeouts during that.
1569 */
1570static void
1572 bool last_write)
1573{
1575
1576 /*
1577 * Fill the send timestamp last, so that it is taken as late as possible.
1578 * This is somewhat ugly, but the protocol is set as it's already used for
1579 * several releases by streaming physical replication.
1580 */
1584 memcpy(&ctx->out->data[1 + sizeof(int64) + sizeof(int64)],
1585 tmpbuf.data, sizeof(int64));
1586
1587 /* output previously gathered data in a CopyData packet */
1589
1591
1592 /* Try to flush pending output to the client */
1593 if (pq_flush_if_writable() != 0)
1595
1596 /* Try taking fast path unless we get too close to walsender timeout. */
1598 wal_sender_timeout / 2) &&
1600 {
1601 return;
1602 }
1603
1604 /* If we have pending write here, go to slow path */
1606}
1607
1608/*
1609 * Wait until there is no pending write. Also process replies from the other
1610 * side and check timeouts during that.
1611 */
1612static void
1614{
1615 for (;;)
1616 {
1617 long sleeptime;
1618
1619 /* Check for input from the client */
1621
1622 /* die if timeout was reached */
1624
1625 /* Send keepalive if the time has come */
1627
1628 if (!pq_is_send_pending())
1629 break;
1630
1632
1633 /* Sleep until something happens or we time out */
1635 WAIT_EVENT_WAL_SENDER_WRITE_DATA);
1636
1637 /* Clear any already-pending wakeups */
1639
1641
1642 /* Process any requests or signals received recently */
1644 {
1645 ConfigReloadPending = false;
1648 }
1649
1650 /* Try to flush pending output to the client */
1651 if (pq_flush_if_writable() != 0)
1653 }
1654
1655 /* reactivate latch so WalSndLoop knows to continue */
1657}
1658
1659/*
1660 * LogicalDecodingContext 'update_progress' callback.
1661 *
1662 * Write the current position to the lag tracker (see XLogSendPhysical).
1663 *
1664 * When skipping empty transactions, send a keepalive message if necessary.
1665 */
1666static void
1668 bool skipped_xact)
1669{
1670 static TimestampTz sendTime = 0;
1672 bool pending_writes = false;
1673 bool end_xact = ctx->end_xact;
1674
1675 /*
1676 * Track lag no more than once per WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS to
1677 * avoid flooding the lag tracker when we commit frequently.
1678 *
1679 * We don't have a mechanism to get the ack for any LSN other than end
1680 * xact LSN from the downstream. So, we track lag only for end of
1681 * transaction LSN.
1682 */
1683#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS 1000
1684 if (end_xact && TimestampDifferenceExceeds(sendTime, now,
1686 {
1687 LagTrackerWrite(lsn, now);
1688 sendTime = now;
1689 }
1690
1691 /*
1692 * When skipping empty transactions in synchronous replication, we send a
1693 * keepalive message to avoid delaying such transactions.
1694 *
1695 * It is okay to check sync_standbys_status without lock here as in the
1696 * worst case we will just send an extra keepalive message when it is
1697 * really not required.
1698 */
1699 if (skipped_xact &&
1700 SyncRepRequested() &&
1701 (((volatile WalSndCtlData *) WalSndCtl)->sync_standbys_status & SYNC_STANDBY_DEFINED))
1702 {
1703 WalSndKeepalive(false, lsn);
1704
1705 /* Try to flush pending output to the client */
1706 if (pq_flush_if_writable() != 0)
1708
1709 /* If we have pending write here, make sure it's actually flushed */
1710 if (pq_is_send_pending())
1711 pending_writes = true;
1712 }
1713
1714 /*
1715 * Process pending writes if any or try to send a keepalive if required.
1716 * We don't need to try sending keep alive messages at the transaction end
1717 * as that will be done at a later point in time. This is required only
1718 * for large transactions where we don't send any changes to the
1719 * downstream and the receiver can timeout due to that.
1720 */
1721 if (pending_writes || (!end_xact &&
1723 wal_sender_timeout / 2)))
1725}
1726
1727/*
1728 * Wake up the logical walsender processes with logical failover slots if the
1729 * currently acquired physical slot is specified in synchronized_standby_slots GUC.
1730 */
1731void
1733{
1735
1736 /*
1737 * If we are running in a standby, there is no need to wake up walsenders.
1738 * This is because we do not support syncing slots to cascading standbys,
1739 * so, there are no walsenders waiting for standbys to catch up.
1740 */
1741 if (RecoveryInProgress())
1742 return;
1743
1746}
1747
1748/*
1749 * Returns true if not all standbys have caught up to the flushed position
1750 * (flushed_lsn) when the current acquired slot is a logical failover
1751 * slot and we are streaming; otherwise, returns false.
1752 *
1753 * If returning true, the function sets the appropriate wait event in
1754 * wait_event; otherwise, wait_event is set to 0.
1755 */
1756static bool
1757NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
1758{
1759 int elevel = got_STOPPING ? ERROR : WARNING;
1760 bool failover_slot;
1761
1762 failover_slot = (replication_active && MyReplicationSlot->data.failover);
1763
1764 /*
1765 * Note that after receiving the shutdown signal, an ERROR is reported if
1766 * any slots are dropped, invalidated, or inactive. This measure is taken
1767 * to prevent the walsender from waiting indefinitely.
1768 */
1769 if (failover_slot && !StandbySlotsHaveCaughtup(flushed_lsn, elevel))
1770 {
1771 *wait_event = WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION;
1772 return true;
1773 }
1774
1775 *wait_event = 0;
1776 return false;
1777}
1778
1779/*
1780 * Returns true if we need to wait for WALs to be flushed to disk, or if not
1781 * all standbys have caught up to the flushed position (flushed_lsn) when the
1782 * current acquired slot is a logical failover slot and we are
1783 * streaming; otherwise, returns false.
1784 *
1785 * If returning true, the function sets the appropriate wait event in
1786 * wait_event; otherwise, wait_event is set to 0.
1787 */
1788static bool
1790 uint32 *wait_event)
1791{
1792 /* Check if we need to wait for WALs to be flushed to disk */
1793 if (target_lsn > flushed_lsn)
1794 {
1795 *wait_event = WAIT_EVENT_WAL_SENDER_WAIT_FOR_WAL;
1796 return true;
1797 }
1798
1799 /* Check if the standby slots have caught up to the flushed position */
1800 return NeedToWaitForStandbys(flushed_lsn, wait_event);
1801}
1802
1803/*
1804 * Wait till WAL < loc is flushed to disk so it can be safely sent to client.
1805 *
1806 * If the walsender holds a logical failover slot, we also wait for all the
1807 * specified streaming replication standby servers to confirm receipt of WAL
1808 * up to RecentFlushPtr. It is beneficial to wait here for the confirmation
1809 * up to RecentFlushPtr rather than waiting before transmitting each change
1810 * to logical subscribers, which is already covered by RecentFlushPtr.
1811 *
1812 * Returns end LSN of flushed WAL. Normally this will be >= loc, but if we
1813 * detect a shutdown request (either from postmaster or client) we will return
1814 * early, so caller must always check.
1815 */
1816static XLogRecPtr
1818{
1819 int wakeEvents;
1820 uint32 wait_event = 0;
1821 static XLogRecPtr RecentFlushPtr = InvalidXLogRecPtr;
1822 TimestampTz last_flush = 0;
1823
1824 /*
1825 * Fast path to avoid acquiring the spinlock in case we already know we
1826 * have enough WAL available and all the standby servers have confirmed
1827 * receipt of WAL up to RecentFlushPtr. This is particularly interesting
1828 * if we're far behind.
1829 */
1830 if (XLogRecPtrIsValid(RecentFlushPtr) &&
1831 !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1832 return RecentFlushPtr;
1833
1834 /*
1835 * Within the loop, we wait for the necessary WALs to be flushed to disk
1836 * first, followed by waiting for standbys to catch up if there are enough
1837 * WALs (see NeedToWaitForWal()) or upon receiving the shutdown signal.
1838 */
1839 for (;;)
1840 {
1841 bool wait_for_standby_at_stop = false;
1842 long sleeptime;
1844
1845 /* Clear any already-pending wakeups */
1847
1849
1850 /* Process any requests or signals received recently */
1852 {
1853 ConfigReloadPending = false;
1856 }
1857
1858 /* Check for input from the client */
1860
1861 /*
1862 * If we're shutting down, trigger pending WAL to be written out,
1863 * otherwise we'd possibly end up waiting for WAL that never gets
1864 * written, because walwriter has shut down already.
1865 */
1866 if (got_STOPPING)
1868
1869 /*
1870 * To avoid the scenario where standbys need to catch up to a newer
1871 * WAL location in each iteration, we update our idea of the currently
1872 * flushed position only if we are not waiting for standbys to catch
1873 * up.
1874 */
1875 if (wait_event != WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
1876 {
1877 if (!RecoveryInProgress())
1878 RecentFlushPtr = GetFlushRecPtr(NULL);
1879 else
1880 RecentFlushPtr = GetXLogReplayRecPtr(NULL);
1881 }
1882
1883 /*
1884 * If postmaster asked us to stop and the standby slots have caught up
1885 * to the flushed position, don't wait anymore.
1886 *
1887 * It's important to do this check after the recomputation of
1888 * RecentFlushPtr, so we can send all remaining data before shutting
1889 * down.
1890 */
1891 if (got_STOPPING)
1892 {
1893 if (NeedToWaitForStandbys(RecentFlushPtr, &wait_event))
1894 wait_for_standby_at_stop = true;
1895 else
1896 break;
1897 }
1898
1899 /*
1900 * We only send regular messages to the client for full decoded
1901 * transactions, but a synchronous replication and walsender shutdown
1902 * possibly are waiting for a later location. So, before sleeping, we
1903 * send a ping containing the flush location. If the receiver is
1904 * otherwise idle, this keepalive will trigger a reply. Processing the
1905 * reply will update these MyWalSnd locations.
1906 */
1907 if (MyWalSnd->flush < sentPtr &&
1908 MyWalSnd->write < sentPtr &&
1911
1912 /*
1913 * Exit the loop if already caught up and doesn't need to wait for
1914 * standby slots.
1915 */
1916 if (!wait_for_standby_at_stop &&
1917 !NeedToWaitForWal(loc, RecentFlushPtr, &wait_event))
1918 break;
1919
1920 /*
1921 * Waiting for new WAL or waiting for standbys to catch up. Since we
1922 * need to wait, we're now caught up.
1923 */
1924 WalSndCaughtUp = true;
1925
1926 /*
1927 * Try to flush any pending output to the client.
1928 */
1929 if (pq_flush_if_writable() != 0)
1931
1932 /*
1933 * If we have received CopyDone from the client, sent CopyDone
1934 * ourselves, and the output buffer is empty, it's time to exit
1935 * streaming, so fail the current WAL fetch request.
1936 */
1939 break;
1940
1941 /* die if timeout was reached */
1943
1944 /* Send keepalive if the time has come */
1946
1947 /*
1948 * Sleep until something happens or we time out. Also wait for the
1949 * socket becoming writable, if there's still pending output.
1950 * Otherwise we might sit on sendable output data while waiting for
1951 * new WAL to be generated. (But if we have nothing to send, we don't
1952 * want to wake on socket-writable.)
1953 */
1955 sleeptime = WalSndComputeSleeptime(now);
1956
1957 wakeEvents = WL_SOCKET_READABLE;
1958
1959 if (pq_is_send_pending())
1960 wakeEvents |= WL_SOCKET_WRITEABLE;
1961
1962 Assert(wait_event != 0);
1963
1964 /* Report IO statistics, if needed */
1965 if (TimestampDifferenceExceeds(last_flush, now,
1967 {
1968 pgstat_flush_io(false);
1970 last_flush = now;
1971 }
1972
1973 WalSndWait(wakeEvents, sleeptime, wait_event);
1974 }
1975
1976 /* reactivate latch so WalSndLoop knows to continue */
1978 return RecentFlushPtr;
1979}
1980
1981/*
1982 * Execute an incoming replication command.
1983 *
1984 * Returns true if the cmd_string was recognized as WalSender command, false
1985 * if not.
1986 */
1987bool
1988exec_replication_command(const char *cmd_string)
1989{
1990 yyscan_t scanner;
1991 int parse_rc;
1992 Node *cmd_node;
1993 const char *cmdtag;
1994 MemoryContext old_context = CurrentMemoryContext;
1995
1996 /* We save and re-use the cmd_context across calls */
1997 static MemoryContext cmd_context = NULL;
1998
1999 /*
2000 * If WAL sender has been told that shutdown is getting close, switch its
2001 * status accordingly to handle the next replication commands correctly.
2002 */
2003 if (got_STOPPING)
2005
2006 /*
2007 * Throw error if in stopping mode. We need prevent commands that could
2008 * generate WAL while the shutdown checkpoint is being written. To be
2009 * safe, we just prohibit all new commands.
2010 */
2012 ereport(ERROR,
2013 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
2014 errmsg("cannot execute new commands while WAL sender is in stopping mode")));
2015
2016 /*
2017 * CREATE_REPLICATION_SLOT ... LOGICAL exports a snapshot until the next
2018 * command arrives. Clean up the old stuff if there's anything.
2019 */
2021
2023
2024 /*
2025 * Prepare to parse and execute the command.
2026 *
2027 * Because replication command execution can involve beginning or ending
2028 * transactions, we need a working context that will survive that, so we
2029 * make it a child of TopMemoryContext. That in turn creates a hazard of
2030 * long-lived memory leaks if we lose track of the working context. We
2031 * deal with that by creating it only once per walsender, and resetting it
2032 * for each new command. (Normally this reset is a no-op, but if the
2033 * prior exec_replication_command call failed with an error, it won't be.)
2034 *
2035 * This is subtler than it looks. The transactions we manage can extend
2036 * across replication commands, indeed SnapBuildClearExportedSnapshot
2037 * might have just ended one. Because transaction exit will revert to the
2038 * memory context that was current at transaction start, we need to be
2039 * sure that that context is still valid. That motivates re-using the
2040 * same cmd_context rather than making a new one each time.
2041 */
2042 if (cmd_context == NULL)
2044 "Replication command context",
2046 else
2047 MemoryContextReset(cmd_context);
2048
2049 MemoryContextSwitchTo(cmd_context);
2050
2051 replication_scanner_init(cmd_string, &scanner);
2052
2053 /*
2054 * Is it a WalSender command?
2055 */
2057 {
2058 /* Nope; clean up and get out. */
2060
2061 MemoryContextSwitchTo(old_context);
2062 MemoryContextReset(cmd_context);
2063
2064 /* XXX this is a pretty random place to make this check */
2065 if (MyDatabaseId == InvalidOid)
2066 ereport(ERROR,
2067 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2068 errmsg("cannot execute SQL commands in WAL sender for physical replication")));
2069
2070 /* Tell the caller that this wasn't a WalSender command. */
2071 return false;
2072 }
2073
2074 /*
2075 * Looks like a WalSender command, so parse it.
2076 */
2077 parse_rc = replication_yyparse(&cmd_node, scanner);
2078 if (parse_rc != 0)
2079 ereport(ERROR,
2080 (errcode(ERRCODE_SYNTAX_ERROR),
2081 errmsg_internal("replication command parser returned %d",
2082 parse_rc)));
2084
2085 /*
2086 * Report query to various monitoring facilities. For this purpose, we
2087 * report replication commands just like SQL commands.
2088 */
2089 debug_query_string = cmd_string;
2090
2092
2093 /*
2094 * Log replication command if log_replication_commands is enabled. Even
2095 * when it's disabled, log the command with DEBUG1 level for backward
2096 * compatibility.
2097 */
2099 (errmsg("received replication command: %s", cmd_string)));
2100
2101 /*
2102 * Disallow replication commands in aborted transaction blocks.
2103 */
2105 ereport(ERROR,
2106 (errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION),
2107 errmsg("current transaction is aborted, "
2108 "commands ignored until end of transaction block")));
2109
2111
2112 /*
2113 * Allocate buffers that will be used for each outgoing and incoming
2114 * message. We do this just once per command to reduce palloc overhead.
2115 */
2119
2120 switch (cmd_node->type)
2121 {
2122 case T_IdentifySystemCmd:
2123 cmdtag = "IDENTIFY_SYSTEM";
2124 set_ps_display(cmdtag);
2126 EndReplicationCommand(cmdtag);
2127 break;
2128
2129 case T_ReadReplicationSlotCmd:
2130 cmdtag = "READ_REPLICATION_SLOT";
2131 set_ps_display(cmdtag);
2133 EndReplicationCommand(cmdtag);
2134 break;
2135
2136 case T_BaseBackupCmd:
2137 cmdtag = "BASE_BACKUP";
2138 set_ps_display(cmdtag);
2139 PreventInTransactionBlock(true, cmdtag);
2141 EndReplicationCommand(cmdtag);
2142 break;
2143
2144 case T_CreateReplicationSlotCmd:
2145 cmdtag = "CREATE_REPLICATION_SLOT";
2146 set_ps_display(cmdtag);
2148 EndReplicationCommand(cmdtag);
2149 break;
2150
2151 case T_DropReplicationSlotCmd:
2152 cmdtag = "DROP_REPLICATION_SLOT";
2153 set_ps_display(cmdtag);
2155 EndReplicationCommand(cmdtag);
2156 break;
2157
2158 case T_AlterReplicationSlotCmd:
2159 cmdtag = "ALTER_REPLICATION_SLOT";
2160 set_ps_display(cmdtag);
2162 EndReplicationCommand(cmdtag);
2163 break;
2164
2165 case T_StartReplicationCmd:
2166 {
2167 StartReplicationCmd *cmd = (StartReplicationCmd *) cmd_node;
2168
2169 cmdtag = "START_REPLICATION";
2170 set_ps_display(cmdtag);
2171 PreventInTransactionBlock(true, cmdtag);
2172
2173 if (cmd->kind == REPLICATION_KIND_PHYSICAL)
2174 StartReplication(cmd);
2175 else
2177
2178 /* dupe, but necessary per libpqrcv_endstreaming */
2179 EndReplicationCommand(cmdtag);
2180
2181 Assert(xlogreader != NULL);
2182 break;
2183 }
2184
2185 case T_TimeLineHistoryCmd:
2186 cmdtag = "TIMELINE_HISTORY";
2187 set_ps_display(cmdtag);
2188 PreventInTransactionBlock(true, cmdtag);
2190 EndReplicationCommand(cmdtag);
2191 break;
2192
2193 case T_VariableShowStmt:
2194 {
2196 VariableShowStmt *n = (VariableShowStmt *) cmd_node;
2197
2198 cmdtag = "SHOW";
2199 set_ps_display(cmdtag);
2200
2201 /* syscache access needs a transaction environment */
2203 GetPGVariable(n->name, dest);
2205 EndReplicationCommand(cmdtag);
2206 }
2207 break;
2208
2209 case T_UploadManifestCmd:
2210 cmdtag = "UPLOAD_MANIFEST";
2211 set_ps_display(cmdtag);
2212 PreventInTransactionBlock(true, cmdtag);
2214 EndReplicationCommand(cmdtag);
2215 break;
2216
2217 default:
2218 elog(ERROR, "unrecognized replication command node tag: %u",
2219 cmd_node->type);
2220 }
2221
2222 /*
2223 * Done. Revert to caller's memory context, and clean out the cmd_context
2224 * to recover memory right away.
2225 */
2226 MemoryContextSwitchTo(old_context);
2227 MemoryContextReset(cmd_context);
2228
2229 /*
2230 * We need not update ps display or pg_stat_activity, because PostgresMain
2231 * will reset those to "idle". But we must reset debug_query_string to
2232 * ensure it doesn't become a dangling pointer.
2233 */
2234 debug_query_string = NULL;
2235
2236 return true;
2237}
2238
2239/*
2240 * Process any incoming messages while streaming. Also checks if the remote
2241 * end has closed the connection.
2242 */
2243static void
2245{
2246 unsigned char firstchar;
2247 int maxmsglen;
2248 int r;
2249 bool received = false;
2250
2252
2253 /*
2254 * If we already received a CopyDone from the frontend, any subsequent
2255 * message is the beginning of a new command, and should be processed in
2256 * the main processing loop.
2257 */
2258 while (!streamingDoneReceiving)
2259 {
2261 r = pq_getbyte_if_available(&firstchar);
2262 if (r < 0)
2263 {
2264 /* unexpected error or EOF */
2266 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2267 errmsg("unexpected EOF on standby connection")));
2268 proc_exit(0);
2269 }
2270 if (r == 0)
2271 {
2272 /* no data available without blocking */
2273 pq_endmsgread();
2274 break;
2275 }
2276
2277 /* Validate message type and set packet size limit */
2278 switch (firstchar)
2279 {
2280 case PqMsg_CopyData:
2281 maxmsglen = PQ_LARGE_MESSAGE_LIMIT;
2282 break;
2283 case PqMsg_CopyDone:
2284 case PqMsg_Terminate:
2285 maxmsglen = PQ_SMALL_MESSAGE_LIMIT;
2286 break;
2287 default:
2288 ereport(FATAL,
2289 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2290 errmsg("invalid standby message type \"%c\"",
2291 firstchar)));
2292 maxmsglen = 0; /* keep compiler quiet */
2293 break;
2294 }
2295
2296 /* Read the message contents */
2298 if (pq_getmessage(&reply_message, maxmsglen))
2299 {
2301 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2302 errmsg("unexpected EOF on standby connection")));
2303 proc_exit(0);
2304 }
2305
2306 /* ... and process it */
2307 switch (firstchar)
2308 {
2309 /*
2310 * PqMsg_CopyData means a standby reply wrapped in a CopyData
2311 * packet.
2312 */
2313 case PqMsg_CopyData:
2315 received = true;
2316 break;
2317
2318 /*
2319 * PqMsg_CopyDone means the standby requested to finish
2320 * streaming. Reply with CopyDone, if we had not sent that
2321 * already.
2322 */
2323 case PqMsg_CopyDone:
2325 {
2327 streamingDoneSending = true;
2328 }
2329
2331 received = true;
2332 break;
2333
2334 /*
2335 * PqMsg_Terminate means that the standby is closing down the
2336 * socket.
2337 */
2338 case PqMsg_Terminate:
2339 proc_exit(0);
2340
2341 default:
2342 Assert(false); /* NOT REACHED */
2343 }
2344 }
2345
2346 /*
2347 * Save the last reply timestamp if we've received at least one reply.
2348 */
2349 if (received)
2350 {
2353 }
2354}
2355
2356/*
2357 * Process a status update message received from standby.
2358 */
2359static void
2361{
2362 char msgtype;
2363
2364 /*
2365 * Check message type from the first byte.
2366 */
2367 msgtype = pq_getmsgbyte(&reply_message);
2368
2369 switch (msgtype)
2370 {
2373 break;
2374
2377 break;
2378
2381 break;
2382
2383 default:
2385 (errcode(ERRCODE_PROTOCOL_VIOLATION),
2386 errmsg("unexpected message type \"%c\"", msgtype)));
2387 proc_exit(0);
2388 }
2389}
2390
2391/*
2392 * Remember that a walreceiver just confirmed receipt of lsn `lsn`.
2393 */
2394static void
2396{
2397 bool changed = false;
2399
2401 SpinLockAcquire(&slot->mutex);
2402 if (slot->data.restart_lsn != lsn)
2403 {
2404 changed = true;
2405 slot->data.restart_lsn = lsn;
2406 }
2407 SpinLockRelease(&slot->mutex);
2408
2409 if (changed)
2410 {
2414 }
2415
2416 /*
2417 * One could argue that the slot should be saved to disk now, but that'd
2418 * be energy wasted - the worst thing lost information could cause here is
2419 * to give wrong information in a statistics view - we'll just potentially
2420 * be more conservative in removing files.
2421 */
2422}
2423
2424/*
2425 * Regular reply from standby advising of WAL locations on standby server.
2426 */
2427static void
2429{
2430 XLogRecPtr writePtr,
2431 flushPtr,
2432 applyPtr;
2433 bool replyRequested;
2434 TimeOffset writeLag,
2435 flushLag,
2436 applyLag;
2437 bool clearLagTimes;
2439 TimestampTz replyTime;
2440
2441 static bool fullyAppliedLastTime = false;
2442
2443 /* the caller already consumed the msgtype byte */
2444 writePtr = pq_getmsgint64(&reply_message);
2445 flushPtr = pq_getmsgint64(&reply_message);
2446 applyPtr = pq_getmsgint64(&reply_message);
2447 replyTime = pq_getmsgint64(&reply_message);
2448 replyRequested = pq_getmsgbyte(&reply_message);
2449
2451 {
2452 char *replyTimeStr;
2453
2454 /* Copy because timestamptz_to_str returns a static buffer */
2455 replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2456
2457 elog(DEBUG2, "write %X/%08X flush %X/%08X apply %X/%08X%s reply_time %s",
2458 LSN_FORMAT_ARGS(writePtr),
2459 LSN_FORMAT_ARGS(flushPtr),
2460 LSN_FORMAT_ARGS(applyPtr),
2461 replyRequested ? " (reply requested)" : "",
2462 replyTimeStr);
2463
2464 pfree(replyTimeStr);
2465 }
2466
2467 /* See if we can compute the round-trip lag for these positions. */
2469 writeLag = LagTrackerRead(SYNC_REP_WAIT_WRITE, writePtr, now);
2470 flushLag = LagTrackerRead(SYNC_REP_WAIT_FLUSH, flushPtr, now);
2471 applyLag = LagTrackerRead(SYNC_REP_WAIT_APPLY, applyPtr, now);
2472
2473 /*
2474 * If the standby reports that it has fully replayed the WAL in two
2475 * consecutive reply messages, then the second such message must result
2476 * from wal_receiver_status_interval expiring on the standby. This is a
2477 * convenient time to forget the lag times measured when it last
2478 * wrote/flushed/applied a WAL record, to avoid displaying stale lag data
2479 * until more WAL traffic arrives.
2480 */
2481 clearLagTimes = false;
2482 if (applyPtr == sentPtr)
2483 {
2484 if (fullyAppliedLastTime)
2485 clearLagTimes = true;
2486 fullyAppliedLastTime = true;
2487 }
2488 else
2489 fullyAppliedLastTime = false;
2490
2491 /* Send a reply if the standby requested one. */
2492 if (replyRequested)
2494
2495 /*
2496 * Update shared state for this WalSender process based on reply data from
2497 * standby.
2498 */
2499 {
2500 WalSnd *walsnd = MyWalSnd;
2501
2502 SpinLockAcquire(&walsnd->mutex);
2503 walsnd->write = writePtr;
2504 walsnd->flush = flushPtr;
2505 walsnd->apply = applyPtr;
2506 if (writeLag != -1 || clearLagTimes)
2507 walsnd->writeLag = writeLag;
2508 if (flushLag != -1 || clearLagTimes)
2509 walsnd->flushLag = flushLag;
2510 if (applyLag != -1 || clearLagTimes)
2511 walsnd->applyLag = applyLag;
2512 walsnd->replyTime = replyTime;
2513 SpinLockRelease(&walsnd->mutex);
2514 }
2515
2518
2519 /*
2520 * Advance our local xmin horizon when the client confirmed a flush.
2521 */
2522 if (MyReplicationSlot && XLogRecPtrIsValid(flushPtr))
2523 {
2526 else
2528 }
2529}
2530
2531/* compute new replication slot xmin horizon if needed */
2532static void
2534{
2535 bool changed = false;
2537
2538 SpinLockAcquire(&slot->mutex);
2540
2541 /*
2542 * For physical replication we don't need the interlock provided by xmin
2543 * and effective_xmin since the consequences of a missed increase are
2544 * limited to query cancellations, so set both at once.
2545 */
2546 if (!TransactionIdIsNormal(slot->data.xmin) ||
2547 !TransactionIdIsNormal(feedbackXmin) ||
2548 TransactionIdPrecedes(slot->data.xmin, feedbackXmin))
2549 {
2550 changed = true;
2551 slot->data.xmin = feedbackXmin;
2552 slot->effective_xmin = feedbackXmin;
2553 }
2555 !TransactionIdIsNormal(feedbackCatalogXmin) ||
2556 TransactionIdPrecedes(slot->data.catalog_xmin, feedbackCatalogXmin))
2557 {
2558 changed = true;
2559 slot->data.catalog_xmin = feedbackCatalogXmin;
2560 slot->effective_catalog_xmin = feedbackCatalogXmin;
2561 }
2562 SpinLockRelease(&slot->mutex);
2563
2564 if (changed)
2565 {
2568 }
2569}
2570
2571/*
2572 * Check that the provided xmin/epoch are sane, that is, not in the future
2573 * and not so far back as to be already wrapped around.
2574 *
2575 * Epoch of nextXid should be same as standby, or if the counter has
2576 * wrapped, then one greater than standby.
2577 *
2578 * This check doesn't care about whether clog exists for these xids
2579 * at all.
2580 */
2581static bool
2583{
2584 FullTransactionId nextFullXid;
2585 TransactionId nextXid;
2586 uint32 nextEpoch;
2587
2588 nextFullXid = ReadNextFullTransactionId();
2589 nextXid = XidFromFullTransactionId(nextFullXid);
2590 nextEpoch = EpochFromFullTransactionId(nextFullXid);
2591
2592 if (xid <= nextXid)
2593 {
2594 if (epoch != nextEpoch)
2595 return false;
2596 }
2597 else
2598 {
2599 if (epoch + 1 != nextEpoch)
2600 return false;
2601 }
2602
2603 if (!TransactionIdPrecedesOrEquals(xid, nextXid))
2604 return false; /* epoch OK, but it's wrapped around */
2605
2606 return true;
2607}
2608
2609/*
2610 * Hot Standby feedback
2611 */
2612static void
2614{
2615 TransactionId feedbackXmin;
2616 uint32 feedbackEpoch;
2617 TransactionId feedbackCatalogXmin;
2618 uint32 feedbackCatalogEpoch;
2619 TimestampTz replyTime;
2620
2621 /*
2622 * Decipher the reply message. The caller already consumed the msgtype
2623 * byte. See XLogWalRcvSendHSFeedback() in walreceiver.c for the creation
2624 * of this message.
2625 */
2626 replyTime = pq_getmsgint64(&reply_message);
2627 feedbackXmin = pq_getmsgint(&reply_message, 4);
2628 feedbackEpoch = pq_getmsgint(&reply_message, 4);
2629 feedbackCatalogXmin = pq_getmsgint(&reply_message, 4);
2630 feedbackCatalogEpoch = pq_getmsgint(&reply_message, 4);
2631
2633 {
2634 char *replyTimeStr;
2635
2636 /* Copy because timestamptz_to_str returns a static buffer */
2637 replyTimeStr = pstrdup(timestamptz_to_str(replyTime));
2638
2639 elog(DEBUG2, "hot standby feedback xmin %u epoch %u, catalog_xmin %u epoch %u reply_time %s",
2640 feedbackXmin,
2641 feedbackEpoch,
2642 feedbackCatalogXmin,
2643 feedbackCatalogEpoch,
2644 replyTimeStr);
2645
2646 pfree(replyTimeStr);
2647 }
2648
2649 /*
2650 * Update shared state for this WalSender process based on reply data from
2651 * standby.
2652 */
2653 {
2654 WalSnd *walsnd = MyWalSnd;
2655
2656 SpinLockAcquire(&walsnd->mutex);
2657 walsnd->replyTime = replyTime;
2658 SpinLockRelease(&walsnd->mutex);
2659 }
2660
2661 /*
2662 * Unset WalSender's xmins if the feedback message values are invalid.
2663 * This happens when the downstream turned hot_standby_feedback off.
2664 */
2665 if (!TransactionIdIsNormal(feedbackXmin)
2666 && !TransactionIdIsNormal(feedbackCatalogXmin))
2667 {
2669 if (MyReplicationSlot != NULL)
2670 PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2671 return;
2672 }
2673
2674 /*
2675 * Check that the provided xmin/epoch are sane, that is, not in the future
2676 * and not so far back as to be already wrapped around. Ignore if not.
2677 */
2678 if (TransactionIdIsNormal(feedbackXmin) &&
2679 !TransactionIdInRecentPast(feedbackXmin, feedbackEpoch))
2680 return;
2681
2682 if (TransactionIdIsNormal(feedbackCatalogXmin) &&
2683 !TransactionIdInRecentPast(feedbackCatalogXmin, feedbackCatalogEpoch))
2684 return;
2685
2686 /*
2687 * Set the WalSender's xmin equal to the standby's requested xmin, so that
2688 * the xmin will be taken into account by GetSnapshotData() /
2689 * ComputeXidHorizons(). This will hold back the removal of dead rows and
2690 * thereby prevent the generation of cleanup conflicts on the standby
2691 * server.
2692 *
2693 * There is a small window for a race condition here: although we just
2694 * checked that feedbackXmin precedes nextXid, the nextXid could have
2695 * gotten advanced between our fetching it and applying the xmin below,
2696 * perhaps far enough to make feedbackXmin wrap around. In that case the
2697 * xmin we set here would be "in the future" and have no effect. No point
2698 * in worrying about this since it's too late to save the desired data
2699 * anyway. Assuming that the standby sends us an increasing sequence of
2700 * xmins, this could only happen during the first reply cycle, else our
2701 * own xmin would prevent nextXid from advancing so far.
2702 *
2703 * We don't bother taking the ProcArrayLock here. Setting the xmin field
2704 * is assumed atomic, and there's no real need to prevent concurrent
2705 * horizon determinations. (If we're moving our xmin forward, this is
2706 * obviously safe, and if we're moving it backwards, well, the data is at
2707 * risk already since a VACUUM could already have determined the horizon.)
2708 *
2709 * If we're using a replication slot we reserve the xmin via that,
2710 * otherwise via the walsender's PGPROC entry. We can only track the
2711 * catalog xmin separately when using a slot, so we store the least of the
2712 * two provided when not using a slot.
2713 *
2714 * XXX: It might make sense to generalize the ephemeral slot concept and
2715 * always use the slot mechanism to handle the feedback xmin.
2716 */
2717 if (MyReplicationSlot != NULL) /* XXX: persistency configurable? */
2718 PhysicalReplicationSlotNewXmin(feedbackXmin, feedbackCatalogXmin);
2719 else
2720 {
2721 if (TransactionIdIsNormal(feedbackCatalogXmin)
2722 && TransactionIdPrecedes(feedbackCatalogXmin, feedbackXmin))
2723 MyProc->xmin = feedbackCatalogXmin;
2724 else
2725 MyProc->xmin = feedbackXmin;
2726 }
2727}
2728
2729/*
2730 * Process the request for a primary status update message.
2731 */
2732static void
2734{
2736 TransactionId oldestXidInCommit;
2737 TransactionId oldestGXidInCommit;
2738 FullTransactionId nextFullXid;
2739 FullTransactionId fullOldestXidInCommit;
2740 WalSnd *walsnd = MyWalSnd;
2741 TimestampTz replyTime;
2742
2743 /*
2744 * This shouldn't happen because we don't support getting primary status
2745 * message from standby.
2746 */
2747 if (RecoveryInProgress())
2748 elog(ERROR, "the primary status is unavailable during recovery");
2749
2750 replyTime = pq_getmsgint64(&reply_message);
2751
2752 /*
2753 * Update shared state for this WalSender process based on reply data from
2754 * standby.
2755 */
2756 SpinLockAcquire(&walsnd->mutex);
2757 walsnd->replyTime = replyTime;
2758 SpinLockRelease(&walsnd->mutex);
2759
2760 /*
2761 * Consider transactions in the current database, as only these are the
2762 * ones replicated.
2763 */
2764 oldestXidInCommit = GetOldestActiveTransactionId(true, false);
2765 oldestGXidInCommit = TwoPhaseGetOldestXidInCommit();
2766
2767 /*
2768 * Update the oldest xid for standby transmission if an older prepared
2769 * transaction exists and is currently in commit phase.
2770 */
2771 if (TransactionIdIsValid(oldestGXidInCommit) &&
2772 TransactionIdPrecedes(oldestGXidInCommit, oldestXidInCommit))
2773 oldestXidInCommit = oldestGXidInCommit;
2774
2775 nextFullXid = ReadNextFullTransactionId();
2776 fullOldestXidInCommit = FullTransactionIdFromAllowableAt(nextFullXid,
2777 oldestXidInCommit);
2778 lsn = GetXLogWriteRecPtr();
2779
2780 elog(DEBUG2, "sending primary status");
2781
2782 /* construct the message... */
2786 pq_sendint64(&output_message, (int64) U64FromFullTransactionId(fullOldestXidInCommit));
2789
2790 /* ... and send it wrapped in CopyData */
2792}
2793
2794/*
2795 * Compute how long send/receive loops should sleep.
2796 *
2797 * If wal_sender_timeout is enabled we want to wake up in time to send
2798 * keepalives and to abort the connection if wal_sender_timeout has been
2799 * reached.
2800 */
2801static long
2803{
2804 long sleeptime = 10000; /* 10 s */
2805
2807 {
2808 TimestampTz wakeup_time;
2809
2810 /*
2811 * At the latest stop sleeping once wal_sender_timeout has been
2812 * reached.
2813 */
2816
2817 /*
2818 * If no ping has been sent yet, wakeup when it's time to do so.
2819 * WalSndKeepaliveIfNecessary() wants to send a keepalive once half of
2820 * the timeout passed without a response.
2821 */
2824 wal_sender_timeout / 2);
2825
2826 /* Compute relative time until wakeup. */
2827 sleeptime = TimestampDifferenceMilliseconds(now, wakeup_time);
2828 }
2829
2830 return sleeptime;
2831}
2832
2833/*
2834 * Check whether there have been responses by the client within
2835 * wal_sender_timeout and shutdown if not. Using last_processing as the
2836 * reference point avoids counting server-side stalls against the client.
2837 * However, a long server-side stall can make WalSndKeepaliveIfNecessary()
2838 * postdate last_processing by more than wal_sender_timeout. If that happens,
2839 * the client must reply almost immediately to avoid a timeout. This rarely
2840 * affects the default configuration, under which clients spontaneously send a
2841 * message every standby_message_timeout = wal_sender_timeout/6 = 10s. We
2842 * could eliminate that problem by recognizing timeout expiration at
2843 * wal_sender_timeout/2 after the keepalive.
2844 */
2845static void
2847{
2848 TimestampTz timeout;
2849
2850 /* don't bail out if we're doing something that doesn't require timeouts */
2851 if (last_reply_timestamp <= 0)
2852 return;
2853
2856
2857 if (wal_sender_timeout > 0 && last_processing >= timeout)
2858 {
2859 /*
2860 * Since typically expiration of replication timeout means
2861 * communication problem, we don't send the error message to the
2862 * standby.
2863 */
2865 (errmsg("terminating walsender process due to replication timeout")));
2866
2868 }
2869}
2870
2871/* Main loop of walsender process that streams the WAL over Copy messages. */
2872static void
2874{
2875 TimestampTz last_flush = 0;
2876
2877 /*
2878 * Initialize the last reply timestamp. That enables timeout processing
2879 * from hereon.
2880 */
2883
2884 /*
2885 * Loop until we reach the end of this timeline or the client requests to
2886 * stop streaming.
2887 */
2888 for (;;)
2889 {
2890 /* Clear any already-pending wakeups */
2892
2894
2895 /* Process any requests or signals received recently */
2897 {
2898 ConfigReloadPending = false;
2901 }
2902
2903 /* Check for input from the client */
2905
2906 /*
2907 * If we have received CopyDone from the client, sent CopyDone
2908 * ourselves, and the output buffer is empty, it's time to exit
2909 * streaming.
2910 */
2913 break;
2914
2915 /*
2916 * If we don't have any pending data in the output buffer, try to send
2917 * some more. If there is some, we don't bother to call send_data
2918 * again until we've flushed it ... but we'd better assume we are not
2919 * caught up.
2920 */
2921 if (!pq_is_send_pending())
2922 send_data();
2923 else
2924 WalSndCaughtUp = false;
2925
2926 /* Try to flush pending output to the client */
2927 if (pq_flush_if_writable() != 0)
2929
2930 /* If nothing remains to be sent right now ... */
2932 {
2933 /*
2934 * If we're in catchup state, move to streaming. This is an
2935 * important state change for users to know about, since before
2936 * this point data loss might occur if the primary dies and we
2937 * need to failover to the standby. The state change is also
2938 * important for synchronous replication, since commits that
2939 * started to wait at that point might wait for some time.
2940 */
2942 {
2944 (errmsg_internal("\"%s\" has now caught up with upstream server",
2947 }
2948
2949 /*
2950 * When SIGUSR2 arrives, we send any outstanding logs up to the
2951 * shutdown checkpoint record (i.e., the latest record), wait for
2952 * them to be replicated to the standby, and exit. This may be a
2953 * normal termination at shutdown, or a promotion, the walsender
2954 * is not sure which.
2955 */
2956 if (got_SIGUSR2)
2957 WalSndDone(send_data);
2958 }
2959
2960 /* Check for replication timeout. */
2962
2963 /* Send keepalive if the time has come */
2965
2966 /*
2967 * Block if we have unsent data. XXX For logical replication, let
2968 * WalSndWaitForWal() handle any other blocking; idle receivers need
2969 * its additional actions. For physical replication, also block if
2970 * caught up; its send_data does not block.
2971 *
2972 * The IO statistics are reported in WalSndWaitForWal() for the
2973 * logical WAL senders.
2974 */
2975 if ((WalSndCaughtUp && send_data != XLogSendLogical &&
2978 {
2979 long sleeptime;
2980 int wakeEvents;
2982
2984 wakeEvents = WL_SOCKET_READABLE;
2985 else
2986 wakeEvents = 0;
2987
2988 /*
2989 * Use fresh timestamp, not last_processing, to reduce the chance
2990 * of reaching wal_sender_timeout before sending a keepalive.
2991 */
2993 sleeptime = WalSndComputeSleeptime(now);
2994
2995 if (pq_is_send_pending())
2996 wakeEvents |= WL_SOCKET_WRITEABLE;
2997
2998 /* Report IO statistics, if needed */
2999 if (TimestampDifferenceExceeds(last_flush, now,
3001 {
3002 pgstat_flush_io(false);
3004 last_flush = now;
3005 }
3006
3007 /* Sleep until something happens or we time out */
3008 WalSndWait(wakeEvents, sleeptime, WAIT_EVENT_WAL_SENDER_MAIN);
3009 }
3010 }
3011}
3012
3013/* Initialize a per-walsender data structure for this walsender process */
3014static void
3016{
3017 int i;
3018
3019 /*
3020 * WalSndCtl should be set up already (we inherit this by fork() or
3021 * EXEC_BACKEND mechanism from the postmaster).
3022 */
3023 Assert(WalSndCtl != NULL);
3024 Assert(MyWalSnd == NULL);
3025
3026 /*
3027 * Find a free walsender slot and reserve it. This must not fail due to
3028 * the prior check for free WAL senders in InitProcess().
3029 */
3030 for (i = 0; i < max_wal_senders; i++)
3031 {
3032 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3033
3034 SpinLockAcquire(&walsnd->mutex);
3035
3036 if (walsnd->pid != 0)
3037 {
3038 SpinLockRelease(&walsnd->mutex);
3039 continue;
3040 }
3041 else
3042 {
3043 /*
3044 * Found a free slot. Reserve it for us.
3045 */
3046 walsnd->pid = MyProcPid;
3047 walsnd->state = WALSNDSTATE_STARTUP;
3048 walsnd->sentPtr = InvalidXLogRecPtr;
3049 walsnd->needreload = false;
3050 walsnd->write = InvalidXLogRecPtr;
3051 walsnd->flush = InvalidXLogRecPtr;
3052 walsnd->apply = InvalidXLogRecPtr;
3053 walsnd->writeLag = -1;
3054 walsnd->flushLag = -1;
3055 walsnd->applyLag = -1;
3056 walsnd->sync_standby_priority = 0;
3057 walsnd->replyTime = 0;
3058
3059 /*
3060 * The kind assignment is done here and not in StartReplication()
3061 * and StartLogicalReplication(). Indeed, the logical walsender
3062 * needs to read WAL records (like snapshot of running
3063 * transactions) during the slot creation. So it needs to be woken
3064 * up based on its kind.
3065 *
3066 * The kind assignment could also be done in StartReplication(),
3067 * StartLogicalReplication() and CREATE_REPLICATION_SLOT but it
3068 * seems better to set it on one place.
3069 */
3070 if (MyDatabaseId == InvalidOid)
3072 else
3074
3075 SpinLockRelease(&walsnd->mutex);
3076 /* don't need the lock anymore */
3077 MyWalSnd = (WalSnd *) walsnd;
3078
3079 break;
3080 }
3081 }
3082
3083 Assert(MyWalSnd != NULL);
3084
3085 /* Arrange to clean up at walsender exit */
3087}
3088
3089/* Destroy the per-walsender data structure for this walsender process */
3090static void
3092{
3093 WalSnd *walsnd = MyWalSnd;
3094
3095 Assert(walsnd != NULL);
3096
3097 MyWalSnd = NULL;
3098
3099 SpinLockAcquire(&walsnd->mutex);
3100 /* Mark WalSnd struct as no longer being in use. */
3101 walsnd->pid = 0;
3102 SpinLockRelease(&walsnd->mutex);
3103}
3104
3105/* XLogReaderRoutine->segment_open callback */
3106static void
3108 TimeLineID *tli_p)
3109{
3110 char path[MAXPGPATH];
3111
3112 /*-------
3113 * When reading from a historic timeline, and there is a timeline switch
3114 * within this segment, read from the WAL segment belonging to the new
3115 * timeline.
3116 *
3117 * For example, imagine that this server is currently on timeline 5, and
3118 * we're streaming timeline 4. The switch from timeline 4 to 5 happened at
3119 * 0/13002088. In pg_wal, we have these files:
3120 *
3121 * ...
3122 * 000000040000000000000012
3123 * 000000040000000000000013
3124 * 000000050000000000000013
3125 * 000000050000000000000014
3126 * ...
3127 *
3128 * In this situation, when requested to send the WAL from segment 0x13, on
3129 * timeline 4, we read the WAL from file 000000050000000000000013. Archive
3130 * recovery prefers files from newer timelines, so if the segment was
3131 * restored from the archive on this server, the file belonging to the old
3132 * timeline, 000000040000000000000013, might not exist. Their contents are
3133 * equal up to the switchpoint, because at a timeline switch, the used
3134 * portion of the old segment is copied to the new file.
3135 */
3136 *tli_p = sendTimeLine;
3138 {
3139 XLogSegNo endSegNo;
3140
3141 XLByteToSeg(sendTimeLineValidUpto, endSegNo, state->segcxt.ws_segsize);
3142 if (nextSegNo == endSegNo)
3143 *tli_p = sendTimeLineNextTLI;
3144 }
3145
3146 XLogFilePath(path, *tli_p, nextSegNo, state->segcxt.ws_segsize);
3147 state->seg.ws_file = BasicOpenFile(path, O_RDONLY | PG_BINARY);
3148 if (state->seg.ws_file >= 0)
3149 return;
3150
3151 /*
3152 * If the file is not found, assume it's because the standby asked for a
3153 * too old WAL segment that has already been removed or recycled.
3154 */
3155 if (errno == ENOENT)
3156 {
3157 char xlogfname[MAXFNAMELEN];
3158 int save_errno = errno;
3159
3160 XLogFileName(xlogfname, *tli_p, nextSegNo, wal_segment_size);
3161 errno = save_errno;
3162 ereport(ERROR,
3164 errmsg("requested WAL segment %s has already been removed",
3165 xlogfname)));
3166 }
3167 else
3168 ereport(ERROR,
3170 errmsg("could not open file \"%s\": %m",
3171 path)));
3172}
3173
3174/*
3175 * Send out the WAL in its normal physical/stored form.
3176 *
3177 * Read up to MAX_SEND_SIZE bytes of WAL that's been flushed to disk,
3178 * but not yet sent to the client, and buffer it in the libpq output
3179 * buffer.
3180 *
3181 * If there is no unsent WAL remaining, WalSndCaughtUp is set to true,
3182 * otherwise WalSndCaughtUp is set to false.
3183 */
3184static void
3186{
3187 XLogRecPtr SendRqstPtr;
3188 XLogRecPtr startptr;
3189 XLogRecPtr endptr;
3190 Size nbytes;
3191 XLogSegNo segno;
3192 WALReadError errinfo;
3193 Size rbytes;
3194
3195 /* If requested switch the WAL sender to the stopping state. */
3196 if (got_STOPPING)
3198
3200 {
3201 WalSndCaughtUp = true;
3202 return;
3203 }
3204
3205 /* Figure out how far we can safely send the WAL. */
3207 {
3208 /*
3209 * Streaming an old timeline that's in this server's history, but is
3210 * not the one we're currently inserting or replaying. It can be
3211 * streamed up to the point where we switched off that timeline.
3212 */
3213 SendRqstPtr = sendTimeLineValidUpto;
3214 }
3215 else if (am_cascading_walsender)
3216 {
3217 TimeLineID SendRqstTLI;
3218
3219 /*
3220 * Streaming the latest timeline on a standby.
3221 *
3222 * Attempt to send all WAL that has already been replayed, so that we
3223 * know it's valid. If we're receiving WAL through streaming
3224 * replication, it's also OK to send any WAL that has been received
3225 * but not replayed.
3226 *
3227 * The timeline we're recovering from can change, or we can be
3228 * promoted. In either case, the current timeline becomes historic. We
3229 * need to detect that so that we don't try to stream past the point
3230 * where we switched to another timeline. We check for promotion or
3231 * timeline switch after calculating FlushPtr, to avoid a race
3232 * condition: if the timeline becomes historic just after we checked
3233 * that it was still current, it's still be OK to stream it up to the
3234 * FlushPtr that was calculated before it became historic.
3235 */
3236 bool becameHistoric = false;
3237
3238 SendRqstPtr = GetStandbyFlushRecPtr(&SendRqstTLI);
3239
3240 if (!RecoveryInProgress())
3241 {
3242 /* We have been promoted. */
3243 SendRqstTLI = GetWALInsertionTimeLine();
3244 am_cascading_walsender = false;
3245 becameHistoric = true;
3246 }
3247 else
3248 {
3249 /*
3250 * Still a cascading standby. But is the timeline we're sending
3251 * still the one recovery is recovering from?
3252 */
3253 if (sendTimeLine != SendRqstTLI)
3254 becameHistoric = true;
3255 }
3256
3257 if (becameHistoric)
3258 {
3259 /*
3260 * The timeline we were sending has become historic. Read the
3261 * timeline history file of the new timeline to see where exactly
3262 * we forked off from the timeline we were sending.
3263 */
3264 List *history;
3265
3266 history = readTimeLineHistory(SendRqstTLI);
3268
3270 list_free_deep(history);
3271
3273
3274 SendRqstPtr = sendTimeLineValidUpto;
3275 }
3276 }
3277 else
3278 {
3279 /*
3280 * Streaming the current timeline on a primary.
3281 *
3282 * Attempt to send all data that's already been written out and
3283 * fsync'd to disk. We cannot go further than what's been written out
3284 * given the current implementation of WALRead(). And in any case
3285 * it's unsafe to send WAL that is not securely down to disk on the
3286 * primary: if the primary subsequently crashes and restarts, standbys
3287 * must not have applied any WAL that got lost on the primary.
3288 */
3289 SendRqstPtr = GetFlushRecPtr(NULL);
3290 }
3291
3292 /*
3293 * Record the current system time as an approximation of the time at which
3294 * this WAL location was written for the purposes of lag tracking.
3295 *
3296 * In theory we could make XLogFlush() record a time in shmem whenever WAL
3297 * is flushed and we could get that time as well as the LSN when we call
3298 * GetFlushRecPtr() above (and likewise for the cascading standby
3299 * equivalent), but rather than putting any new code into the hot WAL path
3300 * it seems good enough to capture the time here. We should reach this
3301 * after XLogFlush() runs WalSndWakeupProcessRequests(), and although that
3302 * may take some time, we read the WAL flush pointer and take the time
3303 * very close to together here so that we'll get a later position if it is
3304 * still moving.
3305 *
3306 * Because LagTrackerWrite ignores samples when the LSN hasn't advanced,
3307 * this gives us a cheap approximation for the WAL flush time for this
3308 * LSN.
3309 *
3310 * Note that the LSN is not necessarily the LSN for the data contained in
3311 * the present message; it's the end of the WAL, which might be further
3312 * ahead. All the lag tracking machinery cares about is finding out when
3313 * that arbitrary LSN is eventually reported as written, flushed and
3314 * applied, so that it can measure the elapsed time.
3315 */
3316 LagTrackerWrite(SendRqstPtr, GetCurrentTimestamp());
3317
3318 /*
3319 * If this is a historic timeline and we've reached the point where we
3320 * forked to the next timeline, stop streaming.
3321 *
3322 * Note: We might already have sent WAL > sendTimeLineValidUpto. The
3323 * startup process will normally replay all WAL that has been received
3324 * from the primary, before promoting, but if the WAL streaming is
3325 * terminated at a WAL page boundary, the valid portion of the timeline
3326 * might end in the middle of a WAL record. We might've already sent the
3327 * first half of that partial WAL record to the cascading standby, so that
3328 * sentPtr > sendTimeLineValidUpto. That's OK; the cascading standby can't
3329 * replay the partial WAL record either, so it can still follow our
3330 * timeline switch.
3331 */
3333 {
3334 /* close the current file. */
3335 if (xlogreader->seg.ws_file >= 0)
3337
3338 /* Send CopyDone */
3340 streamingDoneSending = true;
3341
3342 WalSndCaughtUp = true;
3343
3344 elog(DEBUG1, "walsender reached end of timeline at %X/%08X (sent up to %X/%08X)",
3347 return;
3348 }
3349
3350 /* Do we have any work to do? */
3351 Assert(sentPtr <= SendRqstPtr);
3352 if (SendRqstPtr <= sentPtr)
3353 {
3354 WalSndCaughtUp = true;
3355 return;
3356 }
3357
3358 /*
3359 * Figure out how much to send in one message. If there's no more than
3360 * MAX_SEND_SIZE bytes to send, send everything. Otherwise send
3361 * MAX_SEND_SIZE bytes, but round back to logfile or page boundary.
3362 *
3363 * The rounding is not only for performance reasons. Walreceiver relies on
3364 * the fact that we never split a WAL record across two messages. Since a
3365 * long WAL record is split at page boundary into continuation records,
3366 * page boundary is always a safe cut-off point. We also assume that
3367 * SendRqstPtr never points to the middle of a WAL record.
3368 */
3369 startptr = sentPtr;
3370 endptr = startptr;
3371 endptr += MAX_SEND_SIZE;
3372
3373 /* if we went beyond SendRqstPtr, back off */
3374 if (SendRqstPtr <= endptr)
3375 {
3376 endptr = SendRqstPtr;
3378 WalSndCaughtUp = false;
3379 else
3380 WalSndCaughtUp = true;
3381 }
3382 else
3383 {
3384 /* round down to page boundary. */
3385 endptr -= (endptr % XLOG_BLCKSZ);
3386 WalSndCaughtUp = false;
3387 }
3388
3389 nbytes = endptr - startptr;
3390 Assert(nbytes <= MAX_SEND_SIZE);
3391
3392 /*
3393 * OK to read and send the slice.
3394 */
3397
3398 pq_sendint64(&output_message, startptr); /* dataStart */
3399 pq_sendint64(&output_message, SendRqstPtr); /* walEnd */
3400 pq_sendint64(&output_message, 0); /* sendtime, filled in last */
3401
3402 /*
3403 * Read the log directly into the output buffer to avoid extra memcpy
3404 * calls.
3405 */
3407
3408retry:
3409 /* attempt to read WAL from WAL buffers first */
3411 startptr, nbytes, xlogreader->seg.ws_tli);
3412 output_message.len += rbytes;
3413 startptr += rbytes;
3414 nbytes -= rbytes;
3415
3416 /* now read the remaining WAL from WAL file */
3417 if (nbytes > 0 &&
3420 startptr,
3421 nbytes,
3422 xlogreader->seg.ws_tli, /* Pass the current TLI because
3423 * only WalSndSegmentOpen controls
3424 * whether new TLI is needed. */
3425 &errinfo))
3426 WALReadRaiseError(&errinfo);
3427
3428 /* See logical_read_xlog_page(). */
3429 XLByteToSeg(startptr, segno, xlogreader->segcxt.ws_segsize);
3431
3432 /*
3433 * During recovery, the currently-open WAL file might be replaced with the
3434 * file of the same name retrieved from archive. So we always need to
3435 * check what we read was valid after reading into the buffer. If it's
3436 * invalid, we try to open and read the file again.
3437 */
3439 {
3440 WalSnd *walsnd = MyWalSnd;
3441 bool reload;
3442
3443 SpinLockAcquire(&walsnd->mutex);
3444 reload = walsnd->needreload;
3445 walsnd->needreload = false;
3446 SpinLockRelease(&walsnd->mutex);
3447
3448 if (reload && xlogreader->seg.ws_file >= 0)
3449 {
3451
3452 goto retry;
3453 }
3454 }
3455
3456 output_message.len += nbytes;
3458
3459 /*
3460 * Fill the send timestamp last, so that it is taken as late as possible.
3461 */
3464 memcpy(&output_message.data[1 + sizeof(int64) + sizeof(int64)],
3465 tmpbuf.data, sizeof(int64));
3466
3468
3469 sentPtr = endptr;
3470
3471 /* Update shared memory status */
3472 {
3473 WalSnd *walsnd = MyWalSnd;
3474
3475 SpinLockAcquire(&walsnd->mutex);
3476 walsnd->sentPtr = sentPtr;
3477 SpinLockRelease(&walsnd->mutex);
3478 }
3479
3480 /* Report progress of XLOG streaming in PS display */
3482 {
3483 char activitymsg[50];
3484
3485 snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%08X",
3487 set_ps_display(activitymsg);
3488 }
3489}
3490
3491/*
3492 * Stream out logically decoded data.
3493 */
3494static void
3496{
3497 XLogRecord *record;
3498 char *errm;
3499
3500 /*
3501 * We'll use the current flush point to determine whether we've caught up.
3502 * This variable is static in order to cache it across calls. Caching is
3503 * helpful because GetFlushRecPtr() needs to acquire a heavily-contended
3504 * spinlock.
3505 */
3506 static XLogRecPtr flushPtr = InvalidXLogRecPtr;
3507
3508 /*
3509 * Don't know whether we've caught up yet. We'll set WalSndCaughtUp to
3510 * true in WalSndWaitForWal, if we're actually waiting. We also set to
3511 * true if XLogReadRecord() had to stop reading but WalSndWaitForWal
3512 * didn't wait - i.e. when we're shutting down.
3513 */
3514 WalSndCaughtUp = false;
3515
3516 record = XLogReadRecord(logical_decoding_ctx->reader, &errm);
3517
3518 /* xlog record was invalid */
3519 if (errm != NULL)
3520 elog(ERROR, "could not find record while sending logically-decoded data: %s",
3521 errm);
3522
3523 if (record != NULL)
3524 {
3525 /*
3526 * Note the lack of any call to LagTrackerWrite() which is handled by
3527 * WalSndUpdateProgress which is called by output plugin through
3528 * logical decoding write api.
3529 */
3531
3533 }
3534
3535 /*
3536 * If first time through in this session, initialize flushPtr. Otherwise,
3537 * we only need to update flushPtr if EndRecPtr is past it.
3538 */
3539 if (!XLogRecPtrIsValid(flushPtr) ||
3541 {
3542 /*
3543 * For cascading logical WAL senders, we use the replay LSN instead of
3544 * the flush LSN, since logical decoding on a standby only processes
3545 * WAL that has been replayed. This distinction becomes particularly
3546 * important during shutdown, as new WAL is no longer replayed and the
3547 * last replayed LSN marks the furthest point up to which decoding can
3548 * proceed.
3549 */
3551 flushPtr = GetXLogReplayRecPtr(NULL);
3552 else
3553 flushPtr = GetFlushRecPtr(NULL);
3554 }
3555
3556 /* If EndRecPtr is still past our flushPtr, it means we caught up. */
3557 if (logical_decoding_ctx->reader->EndRecPtr >= flushPtr)
3558 WalSndCaughtUp = true;
3559
3560 /*
3561 * If we're caught up and have been requested to stop, have WalSndLoop()
3562 * terminate the connection in an orderly manner, after writing out all
3563 * the pending data.
3564 */
3566 got_SIGUSR2 = true;
3567
3568 /* Update shared memory status */
3569 {
3570 WalSnd *walsnd = MyWalSnd;
3571
3572 SpinLockAcquire(&walsnd->mutex);
3573 walsnd->sentPtr = sentPtr;
3574 SpinLockRelease(&walsnd->mutex);
3575 }
3576}
3577
3578/*
3579 * Shutdown if the sender is caught up.
3580 *
3581 * NB: This should only be called when the shutdown signal has been received
3582 * from postmaster.
3583 *
3584 * Note that if we determine that there's still more data to send, this
3585 * function will return control to the caller.
3586 */
3587static void
3589{
3590 XLogRecPtr replicatedPtr;
3591
3592 /* ... let's just be real sure we're caught up ... */
3593 send_data();
3594
3595 /*
3596 * To figure out whether all WAL has successfully been replicated, check
3597 * flush location if valid, write otherwise. Tools like pg_receivewal will
3598 * usually (unless in synchronous mode) return an invalid flush location.
3599 */
3600 replicatedPtr = XLogRecPtrIsValid(MyWalSnd->flush) ?
3602
3603 if (WalSndCaughtUp && sentPtr == replicatedPtr &&
3605 {
3606 QueryCompletion qc;
3607
3608 /* Inform the standby that XLOG streaming is done */
3609 SetQueryCompletion(&qc, CMDTAG_COPY, 0);
3610 EndCommand(&qc, DestRemote, false);
3611 pq_flush();
3612
3613 proc_exit(0);
3614 }
3617}
3618
3619/*
3620 * Returns the latest point in WAL that has been safely flushed to disk.
3621 * This should only be called when in recovery.
3622 *
3623 * This is called either by cascading walsender to find WAL position to be sent
3624 * to a cascaded standby or by slot synchronization operation to validate remote
3625 * slot's lsn before syncing it locally.
3626 *
3627 * As a side-effect, *tli is updated to the TLI of the last
3628 * replayed WAL record.
3629 */
3632{
3633 XLogRecPtr replayPtr;
3634 TimeLineID replayTLI;
3635 XLogRecPtr receivePtr;
3637 XLogRecPtr result;
3638
3640
3641 /*
3642 * We can safely send what's already been replayed. Also, if walreceiver
3643 * is streaming WAL from the same timeline, we can send anything that it
3644 * has streamed, but hasn't been replayed yet.
3645 */
3646
3647 receivePtr = GetWalRcvFlushRecPtr(NULL, &receiveTLI);
3648 replayPtr = GetXLogReplayRecPtr(&replayTLI);
3649
3650 if (tli)
3651 *tli = replayTLI;
3652
3653 result = replayPtr;
3654 if (receiveTLI == replayTLI && receivePtr > replayPtr)
3655 result = receivePtr;
3656
3657 return result;
3658}
3659
3660/*
3661 * Request walsenders to reload the currently-open WAL file
3662 */
3663void
3665{
3666 int i;
3667
3668 for (i = 0; i < max_wal_senders; i++)
3669 {
3670 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3671
3672 SpinLockAcquire(&walsnd->mutex);
3673 if (walsnd->pid == 0)
3674 {
3675 SpinLockRelease(&walsnd->mutex);
3676 continue;
3677 }
3678 walsnd->needreload = true;
3679 SpinLockRelease(&walsnd->mutex);
3680 }
3681}
3682
3683/*
3684 * Handle PROCSIG_WALSND_INIT_STOPPING signal.
3685 */
3686void
3688{
3690
3691 /*
3692 * If replication has not yet started, die like with SIGTERM. If
3693 * replication is active, only set a flag and wake up the main loop. It
3694 * will send any outstanding WAL, wait for it to be replicated to the
3695 * standby, and then exit gracefully.
3696 */
3697 if (!replication_active)
3698 kill(MyProcPid, SIGTERM);
3699 else
3700 got_STOPPING = true;
3701}
3702
3703/*
3704 * SIGUSR2: set flag to do a last cycle and shut down afterwards. The WAL
3705 * sender should already have been switched to WALSNDSTATE_STOPPING at
3706 * this point.
3707 */
3708static void
3710{
3711 got_SIGUSR2 = true;
3713}
3714
3715/* Set up signal handlers */
3716void
3718{
3719 /* Set up signal handlers */
3721 pqsignal(SIGINT, StatementCancelHandler); /* query cancel */
3722 pqsignal(SIGTERM, die); /* request shutdown */
3723 /* SIGQUIT handler was already set up by InitPostmasterChild */
3724 InitializeTimeouts(); /* establishes SIGALRM handler */
3725 pqsignal(SIGPIPE, SIG_IGN);
3727 pqsignal(SIGUSR2, WalSndLastCycleHandler); /* request a last cycle and
3728 * shutdown */
3729
3730 /* Reset some signals that are accepted by postmaster but not here */
3731 pqsignal(SIGCHLD, SIG_DFL);
3732}
3733
3734/* Report shared-memory space needed by WalSndShmemInit */
3735Size
3737{
3738 Size size = 0;
3739
3740 size = offsetof(WalSndCtlData, walsnds);
3741 size = add_size(size, mul_size(max_wal_senders, sizeof(WalSnd)));
3742
3743 return size;
3744}
3745
3746/* Allocate and initialize walsender-related shared memory */
3747void
3749{
3750 bool found;
3751 int i;
3752
3754 ShmemInitStruct("Wal Sender Ctl", WalSndShmemSize(), &found);
3755
3756 if (!found)
3757 {
3758 /* First time through, so initialize */
3760
3761 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++)
3763
3764 for (i = 0; i < max_wal_senders; i++)
3765 {
3766 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3767
3768 SpinLockInit(&walsnd->mutex);
3769 }
3770
3774 }
3775}
3776
3777/*
3778 * Wake up physical, logical or both kinds of walsenders
3779 *
3780 * The distinction between physical and logical walsenders is done, because:
3781 * - physical walsenders can't send data until it's been flushed
3782 * - logical walsenders on standby can't decode and send data until it's been
3783 * applied
3784 *
3785 * For cascading replication we need to wake up physical walsenders separately
3786 * from logical walsenders (see the comment before calling WalSndWakeup() in
3787 * ApplyWalRecord() for more details).
3788 *
3789 * This will be called inside critical sections, so throwing an error is not
3790 * advisable.
3791 */
3792void
3793WalSndWakeup(bool physical, bool logical)
3794{
3795 /*
3796 * Wake up all the walsenders waiting on WAL being flushed or replayed
3797 * respectively. Note that waiting walsender would have prepared to sleep
3798 * on the CV (i.e., added itself to the CV's waitlist) in WalSndWait()
3799 * before actually waiting.
3800 */
3801 if (physical)
3803
3804 if (logical)
3806}
3807
3808/*
3809 * Wait for readiness on the FeBe socket, or a timeout. The mask should be
3810 * composed of optional WL_SOCKET_WRITEABLE and WL_SOCKET_READABLE flags. Exit
3811 * on postmaster death.
3812 */
3813static void
3814WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
3815{
3816 WaitEvent event;
3817
3818 ModifyWaitEvent(FeBeWaitSet, FeBeWaitSetSocketPos, socket_events, NULL);
3819
3820 /*
3821 * We use a condition variable to efficiently wake up walsenders in
3822 * WalSndWakeup().
3823 *
3824 * Every walsender prepares to sleep on a shared memory CV. Note that it
3825 * just prepares to sleep on the CV (i.e., adds itself to the CV's
3826 * waitlist), but does not actually wait on the CV (IOW, it never calls
3827 * ConditionVariableSleep()). It still uses WaitEventSetWait() for
3828 * waiting, because we also need to wait for socket events. The processes
3829 * (startup process, walreceiver etc.) wanting to wake up walsenders use
3830 * ConditionVariableBroadcast(), which in turn calls SetLatch(), helping
3831 * walsenders come out of WaitEventSetWait().
3832 *
3833 * This approach is simple and efficient because, one doesn't have to loop
3834 * through all the walsenders slots, with a spinlock acquisition and
3835 * release for every iteration, just to wake up only the waiting
3836 * walsenders. It makes WalSndWakeup() callers' life easy.
3837 *
3838 * XXX: A desirable future improvement would be to add support for CVs
3839 * into WaitEventSetWait().
3840 *
3841 * And, we use separate shared memory CVs for physical and logical
3842 * walsenders for selective wake ups, see WalSndWakeup() for more details.
3843 *
3844 * If the wait event is WAIT_FOR_STANDBY_CONFIRMATION, wait on another CV
3845 * until awakened by physical walsenders after the walreceiver confirms
3846 * the receipt of the LSN.
3847 */
3848 if (wait_event == WAIT_EVENT_WAIT_FOR_STANDBY_CONFIRMATION)
3854
3855 if (WaitEventSetWait(FeBeWaitSet, timeout, &event, 1, wait_event) == 1 &&
3856 (event.events & WL_POSTMASTER_DEATH))
3857 {
3859 proc_exit(1);
3860 }
3861
3863}
3864
3865/*
3866 * Signal all walsenders to move to stopping state.
3867 *
3868 * This will trigger walsenders to move to a state where no further WAL can be
3869 * generated. See this file's header for details.
3870 */
3871void
3873{
3874 int i;
3875
3876 for (i = 0; i < max_wal_senders; i++)
3877 {
3878 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3879 pid_t pid;
3880
3881 SpinLockAcquire(&walsnd->mutex);
3882 pid = walsnd->pid;
3883 SpinLockRelease(&walsnd->mutex);
3884
3885 if (pid == 0)
3886 continue;
3887
3889 }
3890}
3891
3892/*
3893 * Wait that all the WAL senders have quit or reached the stopping state. This
3894 * is used by the checkpointer to control when the shutdown checkpoint can
3895 * safely be performed.
3896 */
3897void
3899{
3900 for (;;)
3901 {
3902 int i;
3903 bool all_stopped = true;
3904
3905 for (i = 0; i < max_wal_senders; i++)
3906 {
3907 WalSnd *walsnd = &WalSndCtl->walsnds[i];
3908
3909 SpinLockAcquire(&walsnd->mutex);
3910
3911 if (walsnd->pid == 0)
3912 {
3913 SpinLockRelease(&walsnd->mutex);
3914 continue;
3915 }
3916
3917 if (walsnd->state != WALSNDSTATE_STOPPING)
3918 {
3919 all_stopped = false;
3920 SpinLockRelease(&walsnd->mutex);
3921 break;
3922 }
3923 SpinLockRelease(&walsnd->mutex);
3924 }
3925
3926 /* safe to leave if confirmation is done for all WAL senders */
3927 if (all_stopped)
3928 return;
3929
3930 pg_usleep(10000L); /* wait for 10 msec */
3931 }
3932}
3933
3934/* Set state for current walsender (only called in walsender) */
3935void
3937{
3938 WalSnd *walsnd = MyWalSnd;
3939
3941
3942 if (walsnd->state == state)
3943 return;
3944
3945 SpinLockAcquire(&walsnd->mutex);
3946 walsnd->state = state;
3947 SpinLockRelease(&walsnd->mutex);
3948}
3949
3950/*
3951 * Return a string constant representing the state. This is used
3952 * in system views, and should *not* be translated.
3953 */
3954static const char *
3956{
3957 switch (state)
3958 {
3960 return "startup";
3961 case WALSNDSTATE_BACKUP:
3962 return "backup";
3964 return "catchup";
3966 return "streaming";
3968 return "stopping";
3969 }
3970 return "UNKNOWN";
3971}
3972
3973static Interval *
3975{
3976 Interval *result = palloc(sizeof(Interval));
3977
3978 result->month = 0;
3979 result->day = 0;
3980 result->time = offset;
3981
3982 return result;
3983}
3984
3985/*
3986 * Returns activity of walsenders, including pids and xlog locations sent to
3987 * standby servers.
3988 */
3989Datum
3991{
3992#define PG_STAT_GET_WAL_SENDERS_COLS 12
3993 ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
3994 SyncRepStandbyData *sync_standbys;
3995 int num_standbys;
3996 int i;
3997
3998 InitMaterializedSRF(fcinfo, 0);
3999
4000 /*
4001 * Get the currently active synchronous standbys. This could be out of
4002 * date before we're done, but we'll use the data anyway.
4003 */
4004 num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
4005
4006 for (i = 0; i < max_wal_senders; i++)
4007 {
4008 WalSnd *walsnd = &WalSndCtl->walsnds[i];
4009 XLogRecPtr sent_ptr;
4011 XLogRecPtr flush;
4012 XLogRecPtr apply;
4013 TimeOffset writeLag;
4014 TimeOffset flushLag;
4015 TimeOffset applyLag;
4016 int priority;
4017 int pid;
4019 TimestampTz replyTime;
4020 bool is_sync_standby;
4022 bool nulls[PG_STAT_GET_WAL_SENDERS_COLS] = {0};
4023 int j;
4024
4025 /* Collect data from shared memory */
4026 SpinLockAcquire(&walsnd->mutex);
4027 if (walsnd->pid == 0)
4028 {
4029 SpinLockRelease(&walsnd->mutex);
4030 continue;
4031 }
4032 pid = walsnd->pid;
4033 sent_ptr = walsnd->sentPtr;
4034 state = walsnd->state;
4035 write = walsnd->write;
4036 flush = walsnd->flush;
4037 apply = walsnd->apply;
4038 writeLag = walsnd->writeLag;
4039 flushLag = walsnd->flushLag;
4040 applyLag = walsnd->applyLag;
4041 priority = walsnd->sync_standby_priority;
4042 replyTime = walsnd->replyTime;
4043 SpinLockRelease(&walsnd->mutex);
4044
4045 /*
4046 * Detect whether walsender is/was considered synchronous. We can
4047 * provide some protection against stale data by checking the PID
4048 * along with walsnd_index.
4049 */
4050 is_sync_standby = false;
4051 for (j = 0; j < num_standbys; j++)
4052 {
4053 if (sync_standbys[j].walsnd_index == i &&
4054 sync_standbys[j].pid == pid)
4055 {
4056 is_sync_standby = true;
4057 break;
4058 }
4059 }
4060
4061 values[0] = Int32GetDatum(pid);
4062
4063 if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
4064 {
4065 /*
4066 * Only superusers and roles with privileges of pg_read_all_stats
4067 * can see details. Other users only get the pid value to know
4068 * it's a walsender, but no details.
4069 */
4070 MemSet(&nulls[1], true, PG_STAT_GET_WAL_SENDERS_COLS - 1);
4071 }
4072 else
4073 {
4075
4076 if (!XLogRecPtrIsValid(sent_ptr))
4077 nulls[2] = true;
4078 values[2] = LSNGetDatum(sent_ptr);
4079
4081 nulls[3] = true;
4082 values[3] = LSNGetDatum(write);
4083
4084 if (!XLogRecPtrIsValid(flush))
4085 nulls[4] = true;
4086 values[4] = LSNGetDatum(flush);
4087
4088 if (!XLogRecPtrIsValid(apply))
4089 nulls[5] = true;
4090 values[5] = LSNGetDatum(apply);
4091
4092 /*
4093 * Treat a standby such as a pg_basebackup background process
4094 * which always returns an invalid flush location, as an
4095 * asynchronous standby.
4096 */
4097 priority = XLogRecPtrIsValid(flush) ? priority : 0;
4098
4099 if (writeLag < 0)
4100 nulls[6] = true;
4101 else
4103
4104 if (flushLag < 0)
4105 nulls[7] = true;
4106 else
4108
4109 if (applyLag < 0)
4110 nulls[8] = true;
4111 else
4113
4114 values[9] = Int32GetDatum(priority);
4115
4116 /*
4117 * More easily understood version of standby state. This is purely
4118 * informational.
4119 *
4120 * In quorum-based sync replication, the role of each standby
4121 * listed in synchronous_standby_names can be changing very
4122 * frequently. Any standbys considered as "sync" at one moment can
4123 * be switched to "potential" ones at the next moment. So, it's
4124 * basically useless to report "sync" or "potential" as their sync
4125 * states. We report just "quorum" for them.
4126 */
4127 if (priority == 0)
4128 values[10] = CStringGetTextDatum("async");
4129 else if (is_sync_standby)
4131 CStringGetTextDatum("sync") : CStringGetTextDatum("quorum");
4132 else
4133 values[10] = CStringGetTextDatum("potential");
4134
4135 if (replyTime == 0)
4136 nulls[11] = true;
4137 else
4138 values[11] = TimestampTzGetDatum(replyTime);
4139 }
4140
4141 tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc,
4142 values, nulls);
4143 }
4144
4145 return (Datum) 0;
4146}
4147
4148/*
4149 * Send a keepalive message to standby.
4150 *
4151 * If requestReply is set, the message requests the other party to send
4152 * a message back to us, for heartbeat purposes. We also set a flag to
4153 * let nearby code know that we're waiting for that response, to avoid
4154 * repeated requests.
4155 *
4156 * writePtr is the location up to which the WAL is sent. It is essentially
4157 * the same as sentPtr but in some cases, we need to send keep alive before
4158 * sentPtr is updated like when skipping empty transactions.
4159 */
4160static void
4161WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
4162{
4163 elog(DEBUG2, "sending replication keepalive");
4164
4165 /* construct the message... */
4168 pq_sendint64(&output_message, XLogRecPtrIsValid(writePtr) ? writePtr : sentPtr);
4170 pq_sendbyte(&output_message, requestReply ? 1 : 0);
4171
4172 /* ... and send it wrapped in CopyData */
4174
4175 /* Set local flag */
4176 if (requestReply)
4178}
4179
4180/*
4181 * Send keepalive message if too much time has elapsed.
4182 */
4183static void
4185{
4186 TimestampTz ping_time;
4187
4188 /*
4189 * Don't send keepalive messages if timeouts are globally disabled or
4190 * we're doing something not partaking in timeouts.
4191 */
4193 return;
4194
4196 return;
4197
4198 /*
4199 * If half of wal_sender_timeout has lapsed without receiving any reply
4200 * from the standby, send a keep-alive message to the standby requesting
4201 * an immediate reply.
4202 */
4204 wal_sender_timeout / 2);
4205 if (last_processing >= ping_time)
4206 {
4208
4209 /* Try to flush pending output to the client */
4210 if (pq_flush_if_writable() != 0)
4212 }
4213}
4214
4215/*
4216 * Record the end of the WAL and the time it was flushed locally, so that
4217 * LagTrackerRead can compute the elapsed time (lag) when this WAL location is
4218 * eventually reported to have been written, flushed and applied by the
4219 * standby in a reply message.
4220 */
4221static void
4223{
4224 int new_write_head;
4225 int i;
4226
4227 if (!am_walsender)
4228 return;
4229
4230 /*
4231 * If the lsn hasn't advanced since last time, then do nothing. This way
4232 * we only record a new sample when new WAL has been written.
4233 */
4234 if (lag_tracker->last_lsn == lsn)
4235 return;
4236 lag_tracker->last_lsn = lsn;
4237
4238 /*
4239 * If advancing the write head of the circular buffer would crash into any
4240 * of the read heads, then the buffer is full. In other words, the
4241 * slowest reader (presumably apply) is the one that controls the release
4242 * of space.
4243 */
4244 new_write_head = (lag_tracker->write_head + 1) % LAG_TRACKER_BUFFER_SIZE;
4245 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; ++i)
4246 {
4247 /*
4248 * If the buffer is full, move the slowest reader to a separate
4249 * overflow entry and free its space in the buffer so the write head
4250 * can advance.
4251 */
4252 if (new_write_head == lag_tracker->read_heads[i])
4253 {
4256 lag_tracker->read_heads[i] = -1;
4257 }
4258 }
4259
4260 /* Store a sample at the current write head position. */
4262 lag_tracker->buffer[lag_tracker->write_head].time = local_flush_time;
4263 lag_tracker->write_head = new_write_head;
4264}
4265
4266/*
4267 * Find out how much time has elapsed between the moment WAL location 'lsn'
4268 * (or the highest known earlier LSN) was flushed locally and the time 'now'.
4269 * We have a separate read head for each of the reported LSN locations we
4270 * receive in replies from standby; 'head' controls which read head is
4271 * used. Whenever a read head crosses an LSN which was written into the
4272 * lag buffer with LagTrackerWrite, we can use the associated timestamp to
4273 * find out the time this LSN (or an earlier one) was flushed locally, and
4274 * therefore compute the lag.
4275 *
4276 * Return -1 if no new sample data is available, and otherwise the elapsed
4277 * time in microseconds.
4278 */
4279static TimeOffset
4281{
4282 TimestampTz time = 0;
4283
4284 /*
4285 * If 'lsn' has not passed the WAL position stored in the overflow entry,
4286 * return the elapsed time (in microseconds) since the saved local flush
4287 * time. If the flush time is in the future (due to clock drift), return
4288 * -1 to treat as no valid sample.
4289 *
4290 * Otherwise, switch back to using the buffer to control the read head and
4291 * compute the elapsed time. The read head is then reset to point to the
4292 * oldest entry in the buffer.
4293 */
4294 if (lag_tracker->read_heads[head] == -1)
4295 {
4296 if (lag_tracker->overflowed[head].lsn > lsn)
4297 return (now >= lag_tracker->overflowed[head].time) ?
4298 now - lag_tracker->overflowed[head].time : -1;
4299
4300 time = lag_tracker->overflowed[head].time;
4302 lag_tracker->read_heads[head] =
4304 }
4305
4306 /* Read all unread samples up to this LSN or end of buffer. */
4307 while (lag_tracker->read_heads[head] != lag_tracker->write_head &&
4309 {
4311 lag_tracker->last_read[head] =
4313 lag_tracker->read_heads[head] =
4315 }
4316
4317 /*
4318 * If the lag tracker is empty, that means the standby has processed
4319 * everything we've ever sent so we should now clear 'last_read'. If we
4320 * didn't do that, we'd risk using a stale and irrelevant sample for
4321 * interpolation at the beginning of the next burst of WAL after a period
4322 * of idleness.
4323 */
4325 lag_tracker->last_read[head].time = 0;
4326
4327 if (time > now)
4328 {
4329 /* If the clock somehow went backwards, treat as not found. */
4330 return -1;
4331 }
4332 else if (time == 0)
4333 {
4334 /*
4335 * We didn't cross a time. If there is a future sample that we
4336 * haven't reached yet, and we've already reached at least one sample,
4337 * let's interpolate the local flushed time. This is mainly useful
4338 * for reporting a completely stuck apply position as having
4339 * increasing lag, since otherwise we'd have to wait for it to
4340 * eventually start moving again and cross one of our samples before
4341 * we can show the lag increasing.
4342 */
4344 {
4345 /* There are no future samples, so we can't interpolate. */
4346 return -1;
4347 }
4348 else if (lag_tracker->last_read[head].time != 0)
4349 {
4350 /* We can interpolate between last_read and the next sample. */
4351 double fraction;
4352 WalTimeSample prev = lag_tracker->last_read[head];
4354
4355 if (lsn < prev.lsn)
4356 {
4357 /*
4358 * Reported LSNs shouldn't normally go backwards, but it's
4359 * possible when there is a timeline change. Treat as not
4360 * found.
4361 */
4362 return -1;
4363 }
4364
4365 Assert(prev.lsn < next.lsn);
4366
4367 if (prev.time > next.time)
4368 {
4369 /* If the clock somehow went backwards, treat as not found. */
4370 return -1;
4371 }
4372
4373 /* See how far we are between the previous and next samples. */
4374 fraction =
4375 (double) (lsn - prev.lsn) / (double) (next.lsn - prev.lsn);
4376
4377 /* Scale the local flush time proportionally. */
4378 time = (TimestampTz)
4379 ((double) prev.time + (next.time - prev.time) * fraction);
4380 }
4381 else
4382 {
4383 /*
4384 * We have only a future sample, implying that we were entirely
4385 * caught up but and now there is a new burst of WAL and the
4386 * standby hasn't processed the first sample yet. Until the
4387 * standby reaches the future sample the best we can do is report
4388 * the hypothetical lag if that sample were to be replayed now.
4389 */
4391 }
4392 }
4393
4394 /* Return the elapsed time since local flush time in microseconds. */
4395 Assert(time != 0);
4396 return now - time;
4397}
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5284
void pgaio_error_cleanup(void)
Definition: aio.c:1165
int16 AttrNumber
Definition: attnum.h:21
List * readTimeLineHistory(TimeLineID targetTLI)
Definition: timeline.c:76
TimeLineID tliOfPointInHistory(XLogRecPtr ptr, List *history)
Definition: timeline.c:544
XLogRecPtr tliSwitchPoint(TimeLineID tli, List *history, TimeLineID *nextTLI)
Definition: timeline.c:572
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1757
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1862
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1609
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_RUNNING
void SendBaseBackup(BaseBackupCmd *cmd, IncrementalBackupInfo *ib)
Definition: basebackup.c:990
void AppendIncrementalManifestData(IncrementalBackupInfo *ib, const char *data, int len)
IncrementalBackupInfo * CreateIncrementalBackupInfo(MemoryContext mcxt)
void FinalizeIncrementalManifest(IncrementalBackupInfo *ib)
static int32 next
Definition: blutils.c:224
static Datum values[MAXATTR]
Definition: bootstrap.c:153
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define NameStr(name)
Definition: c.h:756
#define pg_noreturn
Definition: c.h:169
#define SIGNAL_ARGS
Definition: c.h:1349
int64_t int64
Definition: c.h:540
#define PG_BINARY
Definition: c.h:1273
#define UINT64_FORMAT
Definition: c.h:562
uint32_t uint32
Definition: c.h:543
#define MemSet(start, val, len)
Definition: c.h:1024
uint32 TransactionId
Definition: c.h:662
#define OidIsValid(objectId)
Definition: c.h:779
size_t Size
Definition: c.h:615
static void SetQueryCompletion(QueryCompletion *qc, CommandTag commandTag, uint64 nprocessed)
Definition: cmdtag.h:37
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void * yyscan_t
Definition: cubedata.h:65
int64 TimestampTz
Definition: timestamp.h:39
int64 TimeOffset
Definition: timestamp.h:40
void LogicalDecodingProcessRecord(LogicalDecodingContext *ctx, XLogReaderState *record)
Definition: decode.c:88
char * defGetString(DefElem *def)
Definition: define.c:35
bool defGetBoolean(DefElem *def)
Definition: define.c:94
void EndCommand(const QueryCompletion *qc, CommandDest dest, bool force_undecorated_output)
Definition: dest.c:169
DestReceiver * CreateDestReceiver(CommandDest dest)
Definition: dest.c:113
void EndReplicationCommand(const char *commandTag)
Definition: dest.c:205
@ DestRemote
Definition: dest.h:89
@ DestRemoteSimple
Definition: dest.h:91
@ DestNone
Definition: dest.h:87
struct cursor * cur
Definition: ecpg.c:29
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errcode_for_file_access(void)
Definition: elog.c:886
int errdetail(const char *fmt,...)
Definition: elog.c:1216
bool message_level_is_interesting(int elevel)
Definition: elog.c:273
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define LOG
Definition: elog.h:31
#define COMMERROR
Definition: elog.h:33
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
void do_tup_output(TupOutputState *tstate, const Datum *values, const bool *isnull)
Definition: execTuples.c:2464
const TupleTableSlotOps TTSOpsVirtual
Definition: execTuples.c:84
void end_tup_output(TupOutputState *tstate)
Definition: execTuples.c:2522
TupOutputState * begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:2444
int CloseTransientFile(int fd)
Definition: fd.c:2868
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1086
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2691
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
void InitMaterializedSRF(FunctionCallInfo fcinfo, bits32 flags)
Definition: funcapi.c:76
int MyProcPid
Definition: globals.c:47
struct Latch * MyLatch
Definition: globals.c:63
Oid MyDatabaseId
Definition: globals.c:94
void ProcessConfigFile(GucContext context)
Definition: guc-file.l:120
@ PGC_SIGHUP
Definition: guc.h:75
void GetPGVariable(const char *name, DestReceiver *dest)
Definition: guc_funcs.c:408
char * application_name
Definition: guc_tables.c:561
Assert(PointerIsAligned(start, uint64))
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
void proc_exit(int code)
Definition: ipc.c:104
int j
Definition: isn.c:78
int i
Definition: isn.c:77
void SetLatch(Latch *latch)
Definition: latch.c:290
void ResetLatch(Latch *latch)
Definition: latch.c:374
#define pq_flush()
Definition: libpq.h:46
#define PQ_SMALL_MESSAGE_LIMIT
Definition: libpq.h:30
#define pq_flush_if_writable()
Definition: libpq.h:47
#define pq_is_send_pending()
Definition: libpq.h:48
#define PQ_LARGE_MESSAGE_LIMIT
Definition: libpq.h:31
#define pq_putmessage_noblock(msgtype, s, len)
Definition: libpq.h:51
#define FeBeWaitSetSocketPos
Definition: libpq.h:63
void list_free_deep(List *list)
Definition: list.c:1560
void LogicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: logical.c:1820
void FreeDecodingContext(LogicalDecodingContext *ctx)
Definition: logical.c:677
LogicalDecodingContext * CreateDecodingContext(XLogRecPtr start_lsn, List *output_plugin_options, bool fast_forward, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:498
void DecodingContextFindStartpoint(LogicalDecodingContext *ctx)
Definition: logical.c:633
LogicalDecodingContext * CreateInitDecodingContext(const char *plugin, List *output_plugin_options, bool need_full_snapshot, XLogRecPtr restart_lsn, XLogReaderRoutine *xl_routine, LogicalOutputPluginWriterPrepareWrite prepare_write, LogicalOutputPluginWriterWrite do_write, LogicalOutputPluginWriterUpdateProgress update_progress)
Definition: logical.c:332
void CheckLogicalDecodingRequirements(void)
Definition: logical.c:111
char * get_database_name(Oid dbid)
Definition: lsyscache.c:1259
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
void LWLockReleaseAll(void)
Definition: lwlock.c:1945
@ LW_SHARED
Definition: lwlock.h:113
@ LW_EXCLUSIVE
Definition: lwlock.h:112
char * MemoryContextStrdup(MemoryContext context, const char *string)
Definition: mcxt.c:1746
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:400
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1263
char * pstrdup(const char *in)
Definition: mcxt.c:1759
void MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
Definition: mcxt.c:683
void pfree(void *pointer)
Definition: mcxt.c:1594
MemoryContext TopMemoryContext
Definition: mcxt.c:166
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
MemoryContext CacheMemoryContext
Definition: mcxt.c:169
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define HOLD_CANCEL_INTERRUPTS()
Definition: miscadmin.h:142
#define RESUME_CANCEL_INTERRUPTS()
Definition: miscadmin.h:144
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
Oid GetUserId(void)
Definition: miscinit.c:469
@ CMD_SELECT
Definition: nodes.h:275
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
#define MAXPGPATH
const void size_t len
#define lfirst(lc)
Definition: pg_list.h:172
#define NIL
Definition: pg_list.h:68
#define foreach_ptr(type, var, lst)
Definition: pg_list.h:469
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:31
static bool two_phase
static bool failover
#define die(msg)
static char * buf
Definition: pg_test_fsync.c:72
bool pgstat_flush_backend(bool nowait, bits32 flags)
#define PGSTAT_BACKEND_FLUSH_IO
void pgstat_flush_io(bool nowait)
Definition: pgstat_io.c:175
void SendPostmasterSignal(PMSignalReason reason)
Definition: pmsignal.c:165
void MarkPostmasterChildWalSender(void)
Definition: pmsignal.c:309
@ PMSIGNAL_ADVANCE_STATE_MACHINE
Definition: pmsignal.h:43
#define pqsignal
Definition: port.h:531
#define snprintf
Definition: port.h:239
void StatementCancelHandler(SIGNAL_ARGS)
Definition: postgres.c:3062
CommandDest whereToSendOutput
Definition: postgres.c:92
const char * debug_query_string
Definition: postgres.c:89
static Datum Int64GetDatum(int64 X)
Definition: postgres.h:403
uint64_t Datum
Definition: postgres.h:70
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
#define InvalidOid
Definition: postgres_ext.h:37
int pq_getbyte_if_available(unsigned char *c)
Definition: pqcomm.c:1003
int pq_getmessage(StringInfo s, int maxlen)
Definition: pqcomm.c:1203
WaitEventSet * FeBeWaitSet
Definition: pqcomm.c:166
void pq_endmsgread(void)
Definition: pqcomm.c:1165
int pq_getbyte(void)
Definition: pqcomm.c:963
void pq_startmsgread(void)
Definition: pqcomm.c:1141
unsigned int pq_getmsgint(StringInfo msg, int b)
Definition: pqformat.c:415
void pq_sendbytes(StringInfo buf, const void *data, int datalen)
Definition: pqformat.c:126
const char * pq_getmsgstring(StringInfo msg)
Definition: pqformat.c:579
void pq_endmessage(StringInfo buf)
Definition: pqformat.c:296
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:399
void pq_beginmessage(StringInfo buf, char msgtype)
Definition: pqformat.c:88
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:453
void pq_endmessage_reuse(StringInfo buf)
Definition: pqformat.c:314
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:152
static void pq_sendint16(StringInfo buf, uint16 i)
Definition: pqformat.h:136
static int fd(const char *x, int i)
Definition: preproc-init.c:105
#define PROC_AFFECTS_ALL_HORIZONS
Definition: proc.h:62
TransactionId GetOldestActiveTransactionId(bool inCommitOnly, bool allDbs)
Definition: procarray.c:2833
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:284
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:674
@ PROCSIG_WALSND_INIT_STOPPING
Definition: procsignal.h:35
#define PqReplMsg_WALData
Definition: protocol.h:77
#define PqMsg_CopyDone
Definition: protocol.h:64
#define PqMsg_CopyData
Definition: protocol.h:65
#define PqReplMsg_PrimaryStatusRequest
Definition: protocol.h:83
#define PqReplMsg_Keepalive
Definition: protocol.h:75
#define PqMsg_CopyInResponse
Definition: protocol.h:45
#define PqMsg_CopyBothResponse
Definition: protocol.h:54
#define PqReplMsg_PrimaryStatusUpdate
Definition: protocol.h:76
#define PqReplMsg_HotStandbyFeedback
Definition: protocol.h:82
#define PqMsg_Sync
Definition: protocol.h:27
#define PqMsg_CopyFail
Definition: protocol.h:29
#define PqMsg_Flush
Definition: protocol.h:24
#define PqMsg_DataRow
Definition: protocol.h:43
#define PqMsg_Terminate
Definition: protocol.h:28
#define PqReplMsg_StandbyStatusUpdate
Definition: protocol.h:84
bool update_process_title
Definition: ps_status.c:31
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
bool replication_scanner_is_replication_command(yyscan_t yyscanner)
Definition: repl_scanner.l:299
void replication_scanner_finish(yyscan_t yyscanner)
Definition: repl_scanner.l:284
void replication_scanner_init(const char *str, yyscan_t *yyscannerp)
Definition: repl_scanner.l:268
@ REPLICATION_KIND_PHYSICAL
Definition: replnodes.h:22
@ REPLICATION_KIND_LOGICAL
Definition: replnodes.h:23
void ReleaseAuxProcessResources(bool isCommit)
Definition: resowner.c:1016
ResourceOwner CurrentResourceOwner
Definition: resowner.c:173
void CreateAuxProcessResourceOwner(void)
Definition: resowner.c:996
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:176
Size add_size(Size s1, Size s2)
Definition: shmem.c:494
Size mul_size(Size s1, Size s2)
Definition: shmem.c:511
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:388
void pg_usleep(long microsec)
Definition: signal.c:53
void ReplicationSlotAcquire(const char *name, bool nowait, bool error_if_invalid)
Definition: slot.c:625
void ReplicationSlotCreate(const char *name, bool db_specific, ReplicationSlotPersistency persistency, bool two_phase, bool failover, bool synced)
Definition: slot.c:384
void ReplicationSlotMarkDirty(void)
Definition: slot.c:1138
void ReplicationSlotReserveWal(void)
Definition: slot.c:1571
void ReplicationSlotsComputeRequiredXmin(bool already_locked)
Definition: slot.c:1177
void ReplicationSlotPersist(void)
Definition: slot.c:1155
ReplicationSlot * MyReplicationSlot
Definition: slot.c:148
void ReplicationSlotDrop(const char *name, bool nowait)
Definition: slot.c:891
bool SlotExistsInSyncStandbySlots(const char *slot_name)
Definition: slot.c:2868
void ReplicationSlotSave(void)
Definition: slot.c:1120
ReplicationSlot * SearchNamedReplicationSlot(const char *name, bool need_lock)
Definition: slot.c:545
void ReplicationSlotAlter(const char *name, const bool *failover, const bool *two_phase)
Definition: slot.c:914
void ReplicationSlotRelease(void)
Definition: slot.c:763
bool StandbySlotsHaveCaughtup(XLogRecPtr wait_for_lsn, int elevel)
Definition: slot.c:2901
void ReplicationSlotsComputeRequiredLSN(void)
Definition: slot.c:1233
void ReplicationSlotCleanup(bool synced_only)
Definition: slot.c:852
@ RS_PERSISTENT
Definition: slot.h:45
@ RS_EPHEMERAL
Definition: slot.h:46
@ RS_TEMPORARY
Definition: slot.h:47
#define SlotIsPhysical(slot)
Definition: slot.h:254
#define SlotIsLogical(slot)
Definition: slot.h:255
bool IsSyncingReplicationSlots(void)
Definition: slotsync.c:1674
Snapshot SnapBuildInitialSnapshot(SnapBuild *builder)
Definition: snapbuild.c:440
const char * SnapBuildExportSnapshot(SnapBuild *builder)
Definition: snapbuild.c:539
void SnapBuildClearExportedSnapshot(void)
Definition: snapbuild.c:600
bool FirstSnapshotSet
Definition: snapmgr.c:192
void RestoreTransactionSnapshot(Snapshot snapshot, void *source_pgproc)
Definition: snapmgr.c:1854
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
char * dbname
Definition: streamutil.c:49
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:126
void enlargeStringInfo(StringInfo str, int needed)
Definition: stringinfo.c:337
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
ReplicationKind kind
Definition: replnodes.h:56
char * defname
Definition: parsenodes.h:843
int32 day
Definition: timestamp.h:51
int32 month
Definition: timestamp.h:52
TimeOffset time
Definition: timestamp.h:49
WalTimeSample buffer[LAG_TRACKER_BUFFER_SIZE]
Definition: walsender.c:232
int read_heads[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:234
WalTimeSample last_read[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:235
int write_head
Definition: walsender.c:233
XLogRecPtr last_lsn
Definition: walsender.c:231
WalTimeSample overflowed[NUM_SYNC_REP_WAIT_MODE]
Definition: walsender.c:249
Definition: pg_list.h:54
XLogReaderState * reader
Definition: logical.h:42
struct SnapBuild * snapshot_builder
Definition: logical.h:44
StringInfo out
Definition: logical.h:71
Definition: nodes.h:135
NodeTag type
Definition: nodes.h:136
char data[BLCKSZ]
Definition: c.h:1121
TransactionId xmin
Definition: proc.h:194
uint8 statusFlags
Definition: proc.h:259
int pgxactoff
Definition: proc.h:201
uint8 * statusFlags
Definition: proc.h:403
TransactionId xmin
Definition: slot.h:96
TransactionId catalog_xmin
Definition: slot.h:104
XLogRecPtr confirmed_flush
Definition: slot.h:118
TransactionId effective_catalog_xmin
Definition: slot.h:189
slock_t mutex
Definition: slot.h:165
bool in_use
Definition: slot.h:168
TransactionId effective_xmin
Definition: slot.h:188
ReplicationSlotPersistentData data
Definition: slot.h:192
TupleDesc setDesc
Definition: execnodes.h:364
Tuplestorestate * setResult
Definition: execnodes.h:363
XLogRecPtr startpoint
Definition: replnodes.h:97
ReplicationKind kind
Definition: replnodes.h:94
TimeLineID timeline
Definition: replnodes.h:96
uint8 syncrep_method
Definition: syncrep.h:68
TimeLineID timeline
Definition: replnodes.h:120
TimeLineID ws_tli
Definition: xlogreader.h:49
uint32 events
Definition: waiteventset.h:62
ConditionVariable wal_confirm_rcv_cv
WalSnd walsnds[FLEXIBLE_ARRAY_MEMBER]
ConditionVariable wal_replay_cv
dlist_head SyncRepQueue[NUM_SYNC_REP_WAIT_MODE]
ConditionVariable wal_flush_cv
TimeOffset writeLag
slock_t mutex
XLogRecPtr flush
XLogRecPtr sentPtr
TimeOffset flushLag
WalSndState state
ReplicationKind kind
XLogRecPtr write
TimeOffset applyLag
int sync_standby_priority
bool needreload
TimestampTz replyTime
XLogRecPtr apply
TimestampTz time
Definition: walsender.c:222
XLogRecPtr lsn
Definition: walsender.c:221
WALSegmentContext segcxt
Definition: xlogreader.h:270
XLogRecPtr EndRecPtr
Definition: xlogreader.h:206
WALOpenSegment seg
Definition: xlogreader.h:271
Definition: regguts.h:323
void SyncRepInitConfig(void)
Definition: syncrep.c:445
SyncRepConfigData * SyncRepConfig
Definition: syncrep.c:97
int SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys)
Definition: syncrep.c:754
void SyncRepReleaseWaiters(void)
Definition: syncrep.c:474
#define SYNC_REP_PRIORITY
Definition: syncrep.h:35
#define NUM_SYNC_REP_WAIT_MODE
Definition: syncrep.h:27
#define SyncRepRequested()
Definition: syncrep.h:18
#define SYNC_REP_WAIT_WRITE
Definition: syncrep.h:23
#define SYNC_REP_WAIT_FLUSH
Definition: syncrep.h:24
#define SYNC_REP_WAIT_APPLY
Definition: syncrep.h:25
void InitializeTimeouts(void)
Definition: timeout.c:470
#define InvalidTransactionId
Definition: transam.h:31
static FullTransactionId FullTransactionIdFromAllowableAt(FullTransactionId nextFullXid, TransactionId xid)
Definition: transam.h:443
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define U64FromFullTransactionId(x)
Definition: transam.h:49
static bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:282
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:182
void TupleDescInitBuiltinEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:918
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, const Datum *values, const bool *isnull)
Definition: tuplestore.c:784
TransactionId TwoPhaseGetOldestXidInCommit(void)
Definition: twophase.c:2829
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
static Datum IntervalPGetDatum(const Interval *X)
Definition: timestamp.h:58
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:288
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
void ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
Definition: waiteventset.c:656
int WaitEventSetWait(WaitEventSet *set, long timeout, WaitEvent *occurred_events, int nevents, uint32 wait_event_info)
#define WL_SOCKET_READABLE
Definition: waiteventset.h:35
#define WL_POSTMASTER_DEATH
Definition: waiteventset.h:38
#define WL_SOCKET_WRITEABLE
Definition: waiteventset.h:36
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
static void ProcessPendingWrites(void)
Definition: walsender.c:1613
static XLogRecPtr sentPtr
Definition: walsender.c:173
#define READ_REPLICATION_SLOT_COLS
static void AlterReplicationSlot(AlterReplicationSlotCmd *cmd)
Definition: walsender.c:1409
static void WalSndWait(uint32 socket_events, long timeout, uint32 wait_event)
Definition: walsender.c:3814
static void WalSndLastCycleHandler(SIGNAL_ARGS)
Definition: walsender.c:3709
static volatile sig_atomic_t got_SIGUSR2
Definition: walsender.c:205
static void WalSndCheckTimeOut(void)
Definition: walsender.c:2846
static void XLogSendPhysical(void)
Definition: walsender.c:3185
static void ProcessRepliesIfAny(void)
Definition: walsender.c:2244
static bool waiting_for_ping_response
Definition: walsender.c:190
void PhysicalWakeupLogicalWalSnd(void)
Definition: walsender.c:1732
static void SendTimeLineHistory(TimeLineHistoryCmd *cmd)
Definition: walsender.c:581
void WalSndErrorCleanup(void)
Definition: walsender.c:348
static void InitWalSenderSlot(void)
Definition: walsender.c:3015
static void parseCreateReplSlotOptions(CreateReplicationSlotCmd *cmd, bool *reserve_wal, CRSSnapshotAction *snapshot_action, bool *two_phase, bool *failover)
Definition: walsender.c:1118
WalSnd * MyWalSnd
Definition: walsender.c:120
static void ProcessStandbyHSFeedbackMessage(void)
Definition: walsender.c:2613
static void ReadReplicationSlot(ReadReplicationSlotCmd *cmd)
Definition: walsender.c:482
static StringInfoData tmpbuf
Definition: walsender.c:178
static void PhysicalReplicationSlotNewXmin(TransactionId feedbackXmin, TransactionId feedbackCatalogXmin)
Definition: walsender.c:2533
static LagTracker * lag_tracker
Definition: walsender.c:252
static void PhysicalConfirmReceivedLocation(XLogRecPtr lsn)
Definition: walsender.c:2395
static void IdentifySystem(void)
Definition: walsender.c:401
static void WalSndSegmentOpen(XLogReaderState *state, XLogSegNo nextSegNo, TimeLineID *tli_p)
Definition: walsender.c:3107
static StringInfoData reply_message
Definition: walsender.c:177
static void WalSndKeepaliveIfNecessary(void)
Definition: walsender.c:4184
bool am_walsender
Definition: walsender.c:123
void WalSndSetState(WalSndState state)
Definition: walsender.c:3936
static StringInfoData output_message
Definition: walsender.c:176
static TimeLineID sendTimeLine
Definition: walsender.c:164
static bool HandleUploadManifestPacket(StringInfo buf, off_t *offset, IncrementalBackupInfo *ib)
Definition: walsender.c:737
static void WalSndLoop(WalSndSendDataCallback send_data)
Definition: walsender.c:2873
static void WalSndWriteData(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1571
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3793
static LogicalDecodingContext * logical_decoding_ctx
Definition: walsender.c:216
static void XLogSendLogical(void)
Definition: walsender.c:3495
void WalSndShmemInit(void)
Definition: walsender.c:3748
bool am_db_walsender
Definition: walsender.c:126
static volatile sig_atomic_t replication_active
Definition: walsender.c:214
static void UploadManifest(void)
Definition: walsender.c:671
bool wake_wal_senders
Definition: walsender.c:138
static volatile sig_atomic_t got_STOPPING
Definition: walsender.c:206
int max_wal_senders
Definition: walsender.c:129
static bool TransactionIdInRecentPast(TransactionId xid, uint32 epoch)
Definition: walsender.c:2582
static void WalSndUpdateProgress(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool skipped_xact)
Definition: walsender.c:1667
bool exec_replication_command(const char *cmd_string)
Definition: walsender.c:1988
#define WALSND_LOGICAL_LAG_TRACK_INTERVAL_MS
static bool NeedToWaitForStandbys(XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1757
void InitWalSender(void)
Definition: walsender.c:301
#define PG_STAT_GET_WAL_SENDERS_COLS
void(* WalSndSendDataCallback)(void)
Definition: walsender.c:258
Datum pg_stat_get_wal_senders(PG_FUNCTION_ARGS)
Definition: walsender.c:3990
void WalSndInitStopping(void)
Definition: walsender.c:3872
void WalSndWaitStopping(void)
Definition: walsender.c:3898
static bool sendTimeLineIsHistoric
Definition: walsender.c:166
void WalSndRqstFileReload(void)
Definition: walsender.c:3664
static XLogRecPtr WalSndWaitForWal(XLogRecPtr loc)
Definition: walsender.c:1817
bool am_cascading_walsender
Definition: walsender.c:124
static TimestampTz last_processing
Definition: walsender.c:181
static bool NeedToWaitForWal(XLogRecPtr target_lsn, XLogRecPtr flushed_lsn, uint32 *wait_event)
Definition: walsender.c:1789
Size WalSndShmemSize(void)
Definition: walsender.c:3736
bool log_replication_commands
Definition: walsender.c:133
void HandleWalSndInitStopping(void)
Definition: walsender.c:3687
static TimeLineID sendTimeLineNextTLI
Definition: walsender.c:165
static MemoryContext uploaded_manifest_mcxt
Definition: walsender.c:156
static void CreateReplicationSlot(CreateReplicationSlotCmd *cmd)
Definition: walsender.c:1195
static int logical_read_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr, int reqLen, XLogRecPtr targetRecPtr, char *cur_page)
Definition: walsender.c:1045
static void ProcessStandbyPSRequestMessage(void)
Definition: walsender.c:2733
static void ProcessStandbyReplyMessage(void)
Definition: walsender.c:2428
static void WalSndKeepalive(bool requestReply, XLogRecPtr writePtr)
Definition: walsender.c:4161
static void LagTrackerWrite(XLogRecPtr lsn, TimestampTz local_flush_time)
Definition: walsender.c:4222
#define WALSENDER_STATS_FLUSH_INTERVAL
Definition: walsender.c:103
void WalSndSignals(void)
Definition: walsender.c:3717
static bool streamingDoneSending
Definition: walsender.c:198
static void StartLogicalReplication(StartReplicationCmd *cmd)
Definition: walsender.c:1451
static IncrementalBackupInfo * uploaded_manifest
Definition: walsender.c:155
static pg_noreturn void WalSndShutdown(void)
Definition: walsender.c:384
static void WalSndKill(int code, Datum arg)
Definition: walsender.c:3091
int wal_sender_timeout
Definition: walsender.c:131
#define MAX_SEND_SIZE
Definition: walsender.c:114
static Interval * offset_to_interval(TimeOffset offset)
Definition: walsender.c:3974
static bool WalSndCaughtUp
Definition: walsender.c:202
static XLogRecPtr sendTimeLineValidUpto
Definition: walsender.c:167
static void ProcessStandbyMessage(void)
Definition: walsender.c:2360
static void WalSndPrepareWrite(LogicalDecodingContext *ctx, XLogRecPtr lsn, TransactionId xid, bool last_write)
Definition: walsender.c:1544
static void DropReplicationSlot(DropReplicationSlotCmd *cmd)
Definition: walsender.c:1400
#define LAG_TRACKER_BUFFER_SIZE
Definition: walsender.c:226
static const char * WalSndGetStateString(WalSndState state)
Definition: walsender.c:3955
static TimeOffset LagTrackerRead(int head, XLogRecPtr lsn, TimestampTz now)
Definition: walsender.c:4280
static long WalSndComputeSleeptime(TimestampTz now)
Definition: walsender.c:2802
static bool streamingDoneReceiving
Definition: walsender.c:199
static void StartReplication(StartReplicationCmd *cmd)
Definition: walsender.c:813
static void WalSndDone(WalSndSendDataCallback send_data)
Definition: walsender.c:3588
static XLogReaderState * xlogreader
Definition: walsender.c:145
static TimestampTz last_reply_timestamp
Definition: walsender.c:187
XLogRecPtr GetStandbyFlushRecPtr(TimeLineID *tli)
Definition: walsender.c:3631
WalSndCtlData * WalSndCtl
Definition: walsender.c:117
CRSSnapshotAction
Definition: walsender.h:21
@ CRS_USE_SNAPSHOT
Definition: walsender.h:24
@ CRS_NOEXPORT_SNAPSHOT
Definition: walsender.h:23
@ CRS_EXPORT_SNAPSHOT
Definition: walsender.h:22
#define SYNC_STANDBY_DEFINED
WalSndState
@ WALSNDSTATE_STREAMING
@ WALSNDSTATE_BACKUP
@ WALSNDSTATE_CATCHUP
@ WALSNDSTATE_STARTUP
@ WALSNDSTATE_STOPPING
int replication_yyparse(Node **replication_parse_result_p, yyscan_t yyscanner)
#define SIGCHLD
Definition: win32_port.h:168
#define SIGHUP
Definition: win32_port.h:158
#define SIGPIPE
Definition: win32_port.h:163
#define kill(pid, sig)
Definition: win32_port.h:493
#define SIGUSR1
Definition: win32_port.h:170
#define SIGUSR2
Definition: win32_port.h:171
static const unsigned __int64 epoch
bool IsTransactionOrTransactionBlock(void)
Definition: xact.c:5007
bool XactReadOnly
Definition: xact.c:83
void PreventInTransactionBlock(bool isTopLevel, const char *stmtType)
Definition: xact.c:3666
void StartTransactionCommand(void)
Definition: xact.c:3077
bool IsAbortedTransactionBlockState(void)
Definition: xact.c:408
int XactIsoLevel
Definition: xact.c:80
bool IsSubTransaction(void)
Definition: xact.c:5062
bool IsTransactionBlock(void)
Definition: xact.c:4989
void CommitTransactionCommand(void)
Definition: xact.c:3175
#define XACT_REPEATABLE_READ
Definition: xact.h:38
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4609
bool RecoveryInProgress(void)
Definition: xlog.c:6406
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6592
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1754
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3746
int wal_segment_size
Definition: xlog.c:145
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6571
XLogRecPtr GetXLogWriteRecPtr(void)
Definition: xlog.c:9515
bool XLogBackgroundFlush(void)
Definition: xlog.c:2978
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void TLHistoryFilePath(char *path, TimeLineID tli)
static void TLHistoryFileName(char *fname, TimeLineID tli)
#define XLogRecPtrIsValid(r)
Definition: xlogdefs.h:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:47
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:63
uint64 XLogSegNo
Definition: xlogdefs.h:52
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:107
bool WALRead(XLogReaderState *state, char *buf, XLogRecPtr startptr, Size count, TimeLineID tli, WALReadError *errinfo)
Definition: xlogreader.c:1514
XLogRecord * XLogReadRecord(XLogReaderState *state, char **errormsg)
Definition: xlogreader.c:390
void XLogBeginRead(XLogReaderState *state, XLogRecPtr RecPtr)
Definition: xlogreader.c:232
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
static TimeLineID receiveTLI
Definition: xlogrecovery.c:266
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
void wal_segment_close(XLogReaderState *state)
Definition: xlogutils.c:831
void XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage, uint32 wantLength, TimeLineID currTLI)
Definition: xlogutils.c:707
void WALReadRaiseError(WALReadError *errinfo)
Definition: xlogutils.c:1011