PostgreSQL Source Code git master
nbtsort.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * nbtsort.c
4 * Build a btree from sorted input by loading leaf pages sequentially.
5 *
6 * NOTES
7 *
8 * We use tuplesort.c to sort the given index tuples into order.
9 * Then we scan the index tuples in order and build the btree pages
10 * for each level. We load source tuples into leaf-level pages.
11 * Whenever we fill a page at one level, we add a link to it to its
12 * parent level (starting a new parent level if necessary). When
13 * done, we write out each final page on each level, adding it to
14 * its parent level. When we have only one page on a level, it must be
15 * the root -- it can be attached to the btree metapage and we are done.
16 *
17 * It is not wise to pack the pages entirely full, since then *any*
18 * insertion would cause a split (and not only of the leaf page; the need
19 * for a split would cascade right up the tree). The steady-state load
20 * factor for btrees is usually estimated at 70%. We choose to pack leaf
21 * pages to the user-controllable fill factor (default 90%) while upper pages
22 * are always packed to 70%. This gives us reasonable density (there aren't
23 * many upper pages if the keys are reasonable-size) without risking a lot of
24 * cascading splits during early insertions.
25 *
26 * We use the bulk smgr loading facility to bypass the buffer cache and
27 * WAL-log the pages efficiently.
28 *
29 * This code isn't concerned about the FSM at all. The caller is responsible
30 * for initializing that.
31 *
32 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
33 * Portions Copyright (c) 1994, Regents of the University of California
34 *
35 * IDENTIFICATION
36 * src/backend/access/nbtree/nbtsort.c
37 *
38 *-------------------------------------------------------------------------
39 */
40
41#include "postgres.h"
42
43#include "access/nbtree.h"
44#include "access/parallel.h"
45#include "access/relscan.h"
46#include "access/table.h"
47#include "access/tableam.h"
48#include "access/xact.h"
49#include "catalog/index.h"
50#include "commands/progress.h"
51#include "executor/instrument.h"
52#include "miscadmin.h"
53#include "pgstat.h"
54#include "storage/bulk_write.h"
55#include "tcop/tcopprot.h"
56#include "utils/rel.h"
57#include "utils/sortsupport.h"
58#include "utils/tuplesort.h"
59
60
61/* Magic numbers for parallel state sharing */
62#define PARALLEL_KEY_BTREE_SHARED UINT64CONST(0xA000000000000001)
63#define PARALLEL_KEY_TUPLESORT UINT64CONST(0xA000000000000002)
64#define PARALLEL_KEY_TUPLESORT_SPOOL2 UINT64CONST(0xA000000000000003)
65#define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xA000000000000004)
66#define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xA000000000000005)
67#define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xA000000000000006)
68
69/*
70 * DISABLE_LEADER_PARTICIPATION disables the leader's participation in
71 * parallel index builds. This may be useful as a debugging aid.
72#undef DISABLE_LEADER_PARTICIPATION
73 */
74
75/*
76 * Status record for spooling/sorting phase. (Note we may have two of
77 * these due to the special requirements for uniqueness-checking with
78 * dead tuples.)
79 */
80typedef struct BTSpool
81{
82 Tuplesortstate *sortstate; /* state data for tuplesort.c */
88
89/*
90 * Status for index builds performed in parallel. This is allocated in a
91 * dynamic shared memory segment. Note that there is a separate tuplesort TOC
92 * entry, private to tuplesort.c but allocated by this module on its behalf.
93 */
94typedef struct BTShared
95{
96 /*
97 * These fields are not modified during the sort. They primarily exist
98 * for the benefit of worker processes that need to create BTSpool state
99 * corresponding to that used by the leader.
100 */
107
108 /* Query ID, for report in worker processes */
110
111 /*
112 * workersdonecv is used to monitor the progress of workers. All parallel
113 * participants must indicate that they are done before leader can use
114 * mutable state that workers maintain during scan (and before leader can
115 * proceed to tuplesort_performsort()).
116 */
118
119 /*
120 * mutex protects all fields before heapdesc.
121 *
122 * These fields contain status information of interest to B-Tree index
123 * builds that must work just the same when an index is built in parallel.
124 */
125 slock_t mutex;
126
127 /*
128 * Mutable state that is maintained by workers, and reported back to
129 * leader at end of parallel scan.
130 *
131 * nparticipantsdone is number of worker processes finished.
132 *
133 * reltuples is the total number of input heap tuples.
134 *
135 * havedead indicates if RECENTLY_DEAD tuples were encountered during
136 * build.
137 *
138 * indtuples is the total number of tuples that made it into the index.
139 *
140 * brokenhotchain indicates if any worker detected a broken HOT chain
141 * during build.
142 */
144 double reltuples;
146 double indtuples;
148
149 /*
150 * ParallelTableScanDescData data follows. Can't directly embed here, as
151 * implementations of the parallel table scan desc interface might need
152 * stronger alignment.
153 */
155
156/*
157 * Return pointer to a BTShared's parallel table scan.
158 *
159 * c.f. shm_toc_allocate as to why BUFFERALIGN is used, rather than just
160 * MAXALIGN.
161 */
162#define ParallelTableScanFromBTShared(shared) \
163 (ParallelTableScanDesc) ((char *) (shared) + BUFFERALIGN(sizeof(BTShared)))
164
165/*
166 * Status for leader in parallel index build.
167 */
168typedef struct BTLeader
169{
170 /* parallel context itself */
172
173 /*
174 * nparticipanttuplesorts is the exact number of worker processes
175 * successfully launched, plus one leader process if it participates as a
176 * worker (only DISABLE_LEADER_PARTICIPATION builds avoid leader
177 * participating as a worker).
178 */
180
181 /*
182 * Leader process convenience pointers to shared state (leader avoids TOC
183 * lookups).
184 *
185 * btshared is the shared state for entire build. sharedsort is the
186 * shared, tuplesort-managed state passed to each process tuplesort.
187 * sharedsort2 is the corresponding btspool2 shared state, used only when
188 * building unique indexes. snapshot is the snapshot used by the scan iff
189 * an MVCC snapshot is required.
190 */
198
199/*
200 * Working state for btbuild and its callback.
201 *
202 * When parallel CREATE INDEX is used, there is a BTBuildState for each
203 * participant.
204 */
205typedef struct BTBuildState
206{
212
213 /*
214 * spool2 is needed only when the index is a unique index. Dead tuples are
215 * put into spool2 instead of spool in order to avoid uniqueness check.
216 */
218 double indtuples;
219
220 /*
221 * btleader is only present when a parallel index build is performed, and
222 * only in the leader process. (Actually, only the leader has a
223 * BTBuildState. Workers have their own spool and spool2, though.)
224 */
227
228/*
229 * Status record for a btree page being built. We have one of these
230 * for each active tree level.
231 */
232typedef struct BTPageState
233{
234 BulkWriteBuffer btps_buf; /* workspace for page building */
235 BlockNumber btps_blkno; /* block # to write this page at */
236 IndexTuple btps_lowkey; /* page's strict lower bound pivot tuple */
237 OffsetNumber btps_lastoff; /* last item offset loaded */
238 Size btps_lastextra; /* last item's extra posting list space */
239 uint32 btps_level; /* tree level (0 = leaf) */
240 Size btps_full; /* "full" if less than this much free space */
241 struct BTPageState *btps_next; /* link to parent level, if any */
243
244/*
245 * Overall status record for index writing phase.
246 */
247typedef struct BTWriteState
248{
252 BTScanInsert inskey; /* generic insertion scankey */
253 BlockNumber btws_pages_alloced; /* # pages allocated */
255
256
257static double _bt_spools_heapscan(Relation heap, Relation index,
258 BTBuildState *buildstate, IndexInfo *indexInfo);
259static void _bt_spooldestroy(BTSpool *btspool);
260static void _bt_spool(BTSpool *btspool, const ItemPointerData *self,
261 const Datum *values, const bool *isnull);
262static void _bt_leafbuild(BTSpool *btspool, BTSpool *btspool2);
264 bool *isnull, bool tupleIsAlive, void *state);
265static BulkWriteBuffer _bt_blnewpage(BTWriteState *wstate, uint32 level);
266static BTPageState *_bt_pagestate(BTWriteState *wstate, uint32 level);
267static void _bt_slideleft(Page rightmostpage);
268static void _bt_sortaddtup(Page page, Size itemsize,
269 const IndexTupleData *itup, OffsetNumber itup_off,
270 bool newfirstdataitem);
271static void _bt_buildadd(BTWriteState *wstate, BTPageState *state,
272 IndexTuple itup, Size truncextra);
275 BTDedupState dstate);
276static void _bt_uppershutdown(BTWriteState *wstate, BTPageState *state);
277static void _bt_load(BTWriteState *wstate,
278 BTSpool *btspool, BTSpool *btspool2);
279static void _bt_begin_parallel(BTBuildState *buildstate, bool isconcurrent,
280 int request);
281static void _bt_end_parallel(BTLeader *btleader);
283static double _bt_parallel_heapscan(BTBuildState *buildstate,
284 bool *brokenhotchain);
285static void _bt_leader_participate_as_worker(BTBuildState *buildstate);
286static void _bt_parallel_scan_and_sort(BTSpool *btspool, BTSpool *btspool2,
287 BTShared *btshared, Sharedsort *sharedsort,
288 Sharedsort *sharedsort2, int sortmem,
289 bool progress);
290
291
292/*
293 * btbuild() -- build a new btree index.
294 */
297{
298 IndexBuildResult *result;
299 BTBuildState buildstate;
300 double reltuples;
301
302#ifdef BTREE_BUILD_STATS
304 ResetUsage();
305#endif /* BTREE_BUILD_STATS */
306
307 buildstate.isunique = indexInfo->ii_Unique;
308 buildstate.nulls_not_distinct = indexInfo->ii_NullsNotDistinct;
309 buildstate.havedead = false;
310 buildstate.heap = heap;
311 buildstate.spool = NULL;
312 buildstate.spool2 = NULL;
313 buildstate.indtuples = 0;
314 buildstate.btleader = NULL;
315
316 /*
317 * We expect to be called exactly once for any index relation. If that's
318 * not the case, big trouble's what we have.
319 */
321 elog(ERROR, "index \"%s\" already contains data",
323
324 reltuples = _bt_spools_heapscan(heap, index, &buildstate, indexInfo);
325
326 /*
327 * Finish the build by (1) completing the sort of the spool file, (2)
328 * inserting the sorted tuples into btree pages and (3) building the upper
329 * levels. Finally, it may also be necessary to end use of parallelism.
330 */
331 _bt_leafbuild(buildstate.spool, buildstate.spool2);
332 _bt_spooldestroy(buildstate.spool);
333 if (buildstate.spool2)
334 _bt_spooldestroy(buildstate.spool2);
335 if (buildstate.btleader)
336 _bt_end_parallel(buildstate.btleader);
337
338 result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));
339
340 result->heap_tuples = reltuples;
341 result->index_tuples = buildstate.indtuples;
342
343#ifdef BTREE_BUILD_STATS
345 {
346 ShowUsage("BTREE BUILD STATS");
347 ResetUsage();
348 }
349#endif /* BTREE_BUILD_STATS */
350
351 return result;
352}
353
354/*
355 * Create and initialize one or two spool structures, and save them in caller's
356 * buildstate argument. May also fill-in fields within indexInfo used by index
357 * builds.
358 *
359 * Scans the heap, possibly in parallel, filling spools with IndexTuples. This
360 * routine encapsulates all aspects of managing parallelism. Caller need only
361 * call _bt_end_parallel() in parallel case after it is done with spool/spool2.
362 *
363 * Returns the total number of heap tuples scanned.
364 */
365static double
367 IndexInfo *indexInfo)
368{
369 BTSpool *btspool = (BTSpool *) palloc0(sizeof(BTSpool));
370 SortCoordinate coordinate = NULL;
371 double reltuples = 0;
372
373 /*
374 * We size the sort area as maintenance_work_mem rather than work_mem to
375 * speed index creation. This should be OK since a single backend can't
376 * run multiple index creations in parallel (see also: notes on
377 * parallelism and maintenance_work_mem below).
378 */
379 btspool->heap = heap;
380 btspool->index = index;
381 btspool->isunique = indexInfo->ii_Unique;
382 btspool->nulls_not_distinct = indexInfo->ii_NullsNotDistinct;
383
384 /* Save as primary spool */
385 buildstate->spool = btspool;
386
387 /* Report table scan phase started */
390
391 /* Attempt to launch parallel worker scan when required */
392 if (indexInfo->ii_ParallelWorkers > 0)
393 _bt_begin_parallel(buildstate, indexInfo->ii_Concurrent,
394 indexInfo->ii_ParallelWorkers);
395
396 /*
397 * If parallel build requested and at least one worker process was
398 * successfully launched, set up coordination state
399 */
400 if (buildstate->btleader)
401 {
402 coordinate = (SortCoordinate) palloc0(sizeof(SortCoordinateData));
403 coordinate->isWorker = false;
404 coordinate->nParticipants =
405 buildstate->btleader->nparticipanttuplesorts;
406 coordinate->sharedsort = buildstate->btleader->sharedsort;
407 }
408
409 /*
410 * Begin serial/leader tuplesort.
411 *
412 * In cases where parallelism is involved, the leader receives the same
413 * share of maintenance_work_mem as a serial sort (it is generally treated
414 * in the same way as a serial sort once we return). Parallel worker
415 * Tuplesortstates will have received only a fraction of
416 * maintenance_work_mem, though.
417 *
418 * We rely on the lifetime of the Leader Tuplesortstate almost not
419 * overlapping with any worker Tuplesortstate's lifetime. There may be
420 * some small overlap, but that's okay because we rely on leader
421 * Tuplesortstate only allocating a small, fixed amount of memory here.
422 * When its tuplesort_performsort() is called (by our caller), and
423 * significant amounts of memory are likely to be used, all workers must
424 * have already freed almost all memory held by their Tuplesortstates
425 * (they are about to go away completely, too). The overall effect is
426 * that maintenance_work_mem always represents an absolute high watermark
427 * on the amount of memory used by a CREATE INDEX operation, regardless of
428 * the use of parallelism or any other factor.
429 */
430 buildstate->spool->sortstate =
431 tuplesort_begin_index_btree(heap, index, buildstate->isunique,
432 buildstate->nulls_not_distinct,
433 maintenance_work_mem, coordinate,
435
436 /*
437 * If building a unique index, put dead tuples in a second spool to keep
438 * them out of the uniqueness check. We expect that the second spool (for
439 * dead tuples) won't get very full, so we give it only work_mem.
440 */
441 if (indexInfo->ii_Unique)
442 {
443 BTSpool *btspool2 = (BTSpool *) palloc0(sizeof(BTSpool));
444 SortCoordinate coordinate2 = NULL;
445
446 /* Initialize secondary spool */
447 btspool2->heap = heap;
448 btspool2->index = index;
449 btspool2->isunique = false;
450 /* Save as secondary spool */
451 buildstate->spool2 = btspool2;
452
453 if (buildstate->btleader)
454 {
455 /*
456 * Set up non-private state that is passed to
457 * tuplesort_begin_index_btree() about the basic high level
458 * coordination of a parallel sort.
459 */
460 coordinate2 = (SortCoordinate) palloc0(sizeof(SortCoordinateData));
461 coordinate2->isWorker = false;
462 coordinate2->nParticipants =
463 buildstate->btleader->nparticipanttuplesorts;
464 coordinate2->sharedsort = buildstate->btleader->sharedsort2;
465 }
466
467 /*
468 * We expect that the second one (for dead tuples) won't get very
469 * full, so we give it only work_mem
470 */
471 buildstate->spool2->sortstate =
472 tuplesort_begin_index_btree(heap, index, false, false, work_mem,
473 coordinate2, TUPLESORT_NONE);
474 }
475
476 /* Fill spool using either serial or parallel heap scan */
477 if (!buildstate->btleader)
478 reltuples = table_index_build_scan(heap, index, indexInfo, true, true,
479 _bt_build_callback, buildstate,
480 NULL);
481 else
482 reltuples = _bt_parallel_heapscan(buildstate,
483 &indexInfo->ii_BrokenHotChain);
484
485 /*
486 * Set the progress target for the next phase. Reset the block number
487 * values set by table_index_build_scan
488 */
489 {
490 const int progress_index[] = {
494 };
495 const int64 progress_vals[] = {
496 buildstate->indtuples,
497 0, 0
498 };
499
500 pgstat_progress_update_multi_param(3, progress_index, progress_vals);
501 }
502
503 /* okay, all heap tuples are spooled */
504 if (buildstate->spool2 && !buildstate->havedead)
505 {
506 /* spool2 turns out to be unnecessary */
507 _bt_spooldestroy(buildstate->spool2);
508 buildstate->spool2 = NULL;
509 }
510
511 return reltuples;
512}
513
514/*
515 * clean up a spool structure and its substructures.
516 */
517static void
519{
520 tuplesort_end(btspool->sortstate);
521 pfree(btspool);
522}
523
524/*
525 * spool an index entry into the sort file.
526 */
527static void
528_bt_spool(BTSpool *btspool, const ItemPointerData *self, const Datum *values, const bool *isnull)
529{
531 self, values, isnull);
532}
533
534/*
535 * given a spool loaded by successive calls to _bt_spool,
536 * create an entire btree.
537 */
538static void
539_bt_leafbuild(BTSpool *btspool, BTSpool *btspool2)
540{
541 BTWriteState wstate;
542
543#ifdef BTREE_BUILD_STATS
545 {
546 ShowUsage("BTREE BUILD (Spool) STATISTICS");
547 ResetUsage();
548 }
549#endif /* BTREE_BUILD_STATS */
550
551 /* Execute the sort */
555 if (btspool2)
556 {
560 }
561
562 wstate.heap = btspool->heap;
563 wstate.index = btspool->index;
564 wstate.inskey = _bt_mkscankey(wstate.index, NULL);
565 /* _bt_mkscankey() won't set allequalimage without metapage */
566 wstate.inskey->allequalimage = _bt_allequalimage(wstate.index, true);
567
568 /* reserve the metapage */
570
573 _bt_load(&wstate, btspool, btspool2);
574}
575
576/*
577 * Per-tuple callback for table_index_build_scan
578 */
579static void
581 ItemPointer tid,
582 Datum *values,
583 bool *isnull,
584 bool tupleIsAlive,
585 void *state)
586{
587 BTBuildState *buildstate = (BTBuildState *) state;
588
589 /*
590 * insert the index tuple into the appropriate spool file for subsequent
591 * processing
592 */
593 if (tupleIsAlive || buildstate->spool2 == NULL)
594 _bt_spool(buildstate->spool, tid, values, isnull);
595 else
596 {
597 /* dead tuples are put into spool2 */
598 buildstate->havedead = true;
599 _bt_spool(buildstate->spool2, tid, values, isnull);
600 }
601
602 buildstate->indtuples += 1;
603}
604
605/*
606 * allocate workspace for a new, clean btree page, not linked to any siblings.
607 */
608static BulkWriteBuffer
610{
612 Page page;
613 BTPageOpaque opaque;
614
616 page = (Page) buf;
617
618 /* Zero the page and set up standard page header info */
619 _bt_pageinit(page, BLCKSZ);
620
621 /* Initialize BT opaque state */
622 opaque = BTPageGetOpaque(page);
623 opaque->btpo_prev = opaque->btpo_next = P_NONE;
624 opaque->btpo_level = level;
625 opaque->btpo_flags = (level > 0) ? 0 : BTP_LEAF;
626 opaque->btpo_cycleid = 0;
627
628 /* Make the P_HIKEY line pointer appear allocated */
629 ((PageHeader) page)->pd_lower += sizeof(ItemIdData);
630
631 return buf;
632}
633
634/*
635 * emit a completed btree page, and release the working storage.
636 */
637static void
639{
640 smgr_bulk_write(wstate->bulkstate, blkno, buf, true);
641 /* smgr_bulk_write took ownership of 'buf' */
642}
643
644/*
645 * allocate and initialize a new BTPageState. the returned structure
646 * is suitable for immediate use by _bt_buildadd.
647 */
648static BTPageState *
650{
652
653 /* create initial page for level */
654 state->btps_buf = _bt_blnewpage(wstate, level);
655
656 /* and assign it a page position */
657 state->btps_blkno = wstate->btws_pages_alloced++;
658
659 state->btps_lowkey = NULL;
660 /* initialize lastoff so first item goes into P_FIRSTKEY */
661 state->btps_lastoff = P_HIKEY;
662 state->btps_lastextra = 0;
663 state->btps_level = level;
664 /* set "full" threshold based on level. See notes at head of file. */
665 if (level > 0)
666 state->btps_full = (BLCKSZ * (100 - BTREE_NONLEAF_FILLFACTOR) / 100);
667 else
668 state->btps_full = BTGetTargetPageFreeSpace(wstate->index);
669
670 /* no parent level, yet */
671 state->btps_next = NULL;
672
673 return state;
674}
675
676/*
677 * Slide the array of ItemIds from the page back one slot (from P_FIRSTKEY to
678 * P_HIKEY, overwriting P_HIKEY).
679 *
680 * _bt_blnewpage() makes the P_HIKEY line pointer appear allocated, but the
681 * rightmost page on its level is not supposed to get a high key. Now that
682 * it's clear that this page is a rightmost page, remove the unneeded empty
683 * P_HIKEY line pointer space.
684 */
685static void
686_bt_slideleft(Page rightmostpage)
687{
688 OffsetNumber off;
689 OffsetNumber maxoff;
690 ItemId previi;
691
692 maxoff = PageGetMaxOffsetNumber(rightmostpage);
693 Assert(maxoff >= P_FIRSTKEY);
694 previi = PageGetItemId(rightmostpage, P_HIKEY);
695 for (off = P_FIRSTKEY; off <= maxoff; off = OffsetNumberNext(off))
696 {
697 ItemId thisii = PageGetItemId(rightmostpage, off);
698
699 *previi = *thisii;
700 previi = thisii;
701 }
702 ((PageHeader) rightmostpage)->pd_lower -= sizeof(ItemIdData);
703}
704
705/*
706 * Add an item to a page being built.
707 *
708 * This is very similar to nbtinsert.c's _bt_pgaddtup(), but this variant
709 * raises an error directly.
710 *
711 * Note that our nbtsort.c caller does not know yet if the page will be
712 * rightmost. Offset P_FIRSTKEY is always assumed to be the first data key by
713 * caller. Page that turns out to be the rightmost on its level is fixed by
714 * calling _bt_slideleft().
715 */
716static void
718 Size itemsize,
719 const IndexTupleData *itup,
720 OffsetNumber itup_off,
721 bool newfirstdataitem)
722{
723 IndexTupleData trunctuple;
724
725 if (newfirstdataitem)
726 {
727 trunctuple = *itup;
728 trunctuple.t_info = sizeof(IndexTupleData);
729 BTreeTupleSetNAtts(&trunctuple, 0, false);
730 itup = &trunctuple;
731 itemsize = sizeof(IndexTupleData);
732 }
733
734 if (PageAddItem(page, itup, itemsize, itup_off, false, false) == InvalidOffsetNumber)
735 elog(ERROR, "failed to add item to the index page");
736}
737
738/*----------
739 * Add an item to a disk page from the sort output (or add a posting list
740 * item formed from the sort output).
741 *
742 * We must be careful to observe the page layout conventions of nbtsearch.c:
743 * - rightmost pages start data items at P_HIKEY instead of at P_FIRSTKEY.
744 * - on non-leaf pages, the key portion of the first item need not be
745 * stored, we should store only the link.
746 *
747 * A leaf page being built looks like:
748 *
749 * +----------------+---------------------------------+
750 * | PageHeaderData | linp0 linp1 linp2 ... |
751 * +-----------+----+---------------------------------+
752 * | ... linpN | |
753 * +-----------+--------------------------------------+
754 * | ^ last |
755 * | |
756 * +-------------+------------------------------------+
757 * | | itemN ... |
758 * +-------------+------------------+-----------------+
759 * | ... item3 item2 item1 | "special space" |
760 * +--------------------------------+-----------------+
761 *
762 * Contrast this with the diagram in bufpage.h; note the mismatch
763 * between linps and items. This is because we reserve linp0 as a
764 * placeholder for the pointer to the "high key" item; when we have
765 * filled up the page, we will set linp0 to point to itemN and clear
766 * linpN. On the other hand, if we find this is the last (rightmost)
767 * page, we leave the items alone and slide the linp array over. If
768 * the high key is to be truncated, offset 1 is deleted, and we insert
769 * the truncated high key at offset 1.
770 *
771 * 'last' pointer indicates the last offset added to the page.
772 *
773 * 'truncextra' is the size of the posting list in itup, if any. This
774 * information is stashed for the next call here, when we may benefit
775 * from considering the impact of truncating away the posting list on
776 * the page before deciding to finish the page off. Posting lists are
777 * often relatively large, so it is worth going to the trouble of
778 * accounting for the saving from truncating away the posting list of
779 * the tuple that becomes the high key (that may be the only way to
780 * get close to target free space on the page). Note that this is
781 * only used for the soft fillfactor-wise limit, not the critical hard
782 * limit.
783 *----------
784 */
785static void
787 Size truncextra)
788{
789 BulkWriteBuffer nbuf;
790 Page npage;
791 BlockNumber nblkno;
792 OffsetNumber last_off;
793 Size last_truncextra;
794 Size pgspc;
795 Size itupsz;
796 bool isleaf;
797
798 /*
799 * This is a handy place to check for cancel interrupts during the btree
800 * load phase of index creation.
801 */
803
804 nbuf = state->btps_buf;
805 npage = (Page) nbuf;
806 nblkno = state->btps_blkno;
807 last_off = state->btps_lastoff;
808 last_truncextra = state->btps_lastextra;
809 state->btps_lastextra = truncextra;
810
811 pgspc = PageGetFreeSpace(npage);
812 itupsz = IndexTupleSize(itup);
813 itupsz = MAXALIGN(itupsz);
814 /* Leaf case has slightly different rules due to suffix truncation */
815 isleaf = (state->btps_level == 0);
816
817 /*
818 * Check whether the new item can fit on a btree page on current level at
819 * all.
820 *
821 * Every newly built index will treat heap TID as part of the keyspace,
822 * which imposes the requirement that new high keys must occasionally have
823 * a heap TID appended within _bt_truncate(). That may leave a new pivot
824 * tuple one or two MAXALIGN() quantums larger than the original
825 * firstright tuple it's derived from. v4 deals with the problem by
826 * decreasing the limit on the size of tuples inserted on the leaf level
827 * by the same small amount. Enforce the new v4+ limit on the leaf level,
828 * and the old limit on internal levels, since pivot tuples may need to
829 * make use of the reserved space. This should never fail on internal
830 * pages.
831 */
832 if (unlikely(itupsz > BTMaxItemSize))
833 _bt_check_third_page(wstate->index, wstate->heap, isleaf, npage,
834 itup);
835
836 /*
837 * Check to see if current page will fit new item, with space left over to
838 * append a heap TID during suffix truncation when page is a leaf page.
839 *
840 * It is guaranteed that we can fit at least 2 non-pivot tuples plus a
841 * high key with heap TID when finishing off a leaf page, since we rely on
842 * _bt_check_third_page() rejecting oversized non-pivot tuples. On
843 * internal pages we can always fit 3 pivot tuples with larger internal
844 * page tuple limit (includes page high key).
845 *
846 * Most of the time, a page is only "full" in the sense that the soft
847 * fillfactor-wise limit has been exceeded. However, we must always leave
848 * at least two items plus a high key on each page before starting a new
849 * page. Disregard fillfactor and insert on "full" current page if we
850 * don't have the minimum number of items yet. (Note that we deliberately
851 * assume that suffix truncation neither enlarges nor shrinks new high key
852 * when applying soft limit, except when last tuple has a posting list.)
853 */
854 Assert(last_truncextra == 0 || isleaf);
855 if (pgspc < itupsz + (isleaf ? MAXALIGN(sizeof(ItemPointerData)) : 0) ||
856 (pgspc + last_truncextra < state->btps_full && last_off > P_FIRSTKEY))
857 {
858 /*
859 * Finish off the page and write it out.
860 */
861 BulkWriteBuffer obuf = nbuf;
862 Page opage = npage;
863 BlockNumber oblkno = nblkno;
864 ItemId ii;
865 ItemId hii;
866 IndexTuple oitup;
867
868 /* Create new page of same level */
869 nbuf = _bt_blnewpage(wstate, state->btps_level);
870 npage = (Page) nbuf;
871
872 /* and assign it a page position */
873 nblkno = wstate->btws_pages_alloced++;
874
875 /*
876 * We copy the last item on the page into the new page, and then
877 * rearrange the old page so that the 'last item' becomes its high key
878 * rather than a true data item. There had better be at least two
879 * items on the page already, else the page would be empty of useful
880 * data.
881 */
882 Assert(last_off > P_FIRSTKEY);
883 ii = PageGetItemId(opage, last_off);
884 oitup = (IndexTuple) PageGetItem(opage, ii);
885 _bt_sortaddtup(npage, ItemIdGetLength(ii), oitup, P_FIRSTKEY,
886 !isleaf);
887
888 /*
889 * Move 'last' into the high key position on opage. _bt_blnewpage()
890 * allocated empty space for a line pointer when opage was first
891 * created, so this is a matter of rearranging already-allocated space
892 * on page, and initializing high key line pointer. (Actually, leaf
893 * pages must also swap oitup with a truncated version of oitup, which
894 * is sometimes larger than oitup, though never by more than the space
895 * needed to append a heap TID.)
896 */
897 hii = PageGetItemId(opage, P_HIKEY);
898 *hii = *ii;
899 ItemIdSetUnused(ii); /* redundant */
900 ((PageHeader) opage)->pd_lower -= sizeof(ItemIdData);
901
902 if (isleaf)
903 {
904 IndexTuple lastleft;
905 IndexTuple truncated;
906
907 /*
908 * Truncate away any unneeded attributes from high key on leaf
909 * level. This is only done at the leaf level because downlinks
910 * in internal pages are either negative infinity items, or get
911 * their contents from copying from one level down. See also:
912 * _bt_split().
913 *
914 * We don't try to bias our choice of split point to make it more
915 * likely that _bt_truncate() can truncate away more attributes,
916 * whereas the split point used within _bt_split() is chosen much
917 * more delicately. Even still, the lastleft and firstright
918 * tuples passed to _bt_truncate() here are at least not fully
919 * equal to each other when deduplication is used, unless there is
920 * a large group of duplicates (also, unique index builds usually
921 * have few or no spool2 duplicates). When the split point is
922 * between two unequal tuples, _bt_truncate() will avoid including
923 * a heap TID in the new high key, which is the most important
924 * benefit of suffix truncation.
925 *
926 * Overwrite the old item with new truncated high key directly.
927 * oitup is already located at the physical beginning of tuple
928 * space, so this should directly reuse the existing tuple space.
929 */
930 ii = PageGetItemId(opage, OffsetNumberPrev(last_off));
931 lastleft = (IndexTuple) PageGetItem(opage, ii);
932
933 Assert(IndexTupleSize(oitup) > last_truncextra);
934 truncated = _bt_truncate(wstate->index, lastleft, oitup,
935 wstate->inskey);
936 if (!PageIndexTupleOverwrite(opage, P_HIKEY, truncated, IndexTupleSize(truncated)))
937 elog(ERROR, "failed to add high key to the index page");
938 pfree(truncated);
939
940 /* oitup should continue to point to the page's high key */
941 hii = PageGetItemId(opage, P_HIKEY);
942 oitup = (IndexTuple) PageGetItem(opage, hii);
943 }
944
945 /*
946 * Link the old page into its parent, using its low key. If we don't
947 * have a parent, we have to create one; this adds a new btree level.
948 */
949 if (state->btps_next == NULL)
950 state->btps_next = _bt_pagestate(wstate, state->btps_level + 1);
951
952 Assert((BTreeTupleGetNAtts(state->btps_lowkey, wstate->index) <=
954 BTreeTupleGetNAtts(state->btps_lowkey, wstate->index) > 0) ||
956 Assert(BTreeTupleGetNAtts(state->btps_lowkey, wstate->index) == 0 ||
957 !P_LEFTMOST(BTPageGetOpaque(opage)));
958 BTreeTupleSetDownLink(state->btps_lowkey, oblkno);
959 _bt_buildadd(wstate, state->btps_next, state->btps_lowkey, 0);
960 pfree(state->btps_lowkey);
961
962 /*
963 * Save a copy of the high key from the old page. It is also the low
964 * key for the new page.
965 */
966 state->btps_lowkey = CopyIndexTuple(oitup);
967
968 /*
969 * Set the sibling links for both pages.
970 */
971 {
972 BTPageOpaque oopaque = BTPageGetOpaque(opage);
973 BTPageOpaque nopaque = BTPageGetOpaque(npage);
974
975 oopaque->btpo_next = nblkno;
976 nopaque->btpo_prev = oblkno;
977 nopaque->btpo_next = P_NONE; /* redundant */
978 }
979
980 /*
981 * Write out the old page. _bt_blwritepage takes ownership of the
982 * 'opage' buffer.
983 */
984 _bt_blwritepage(wstate, obuf, oblkno);
985
986 /*
987 * Reset last_off to point to new page
988 */
989 last_off = P_FIRSTKEY;
990 }
991
992 /*
993 * By here, either original page is still the current page, or a new page
994 * was created that became the current page. Either way, the current page
995 * definitely has space for new item.
996 *
997 * If the new item is the first for its page, it must also be the first
998 * item on its entire level. On later same-level pages, a low key for a
999 * page will be copied from the prior page in the code above. Generate a
1000 * minus infinity low key here instead.
1001 */
1002 if (last_off == P_HIKEY)
1003 {
1004 Assert(state->btps_lowkey == NULL);
1005 state->btps_lowkey = palloc0(sizeof(IndexTupleData));
1006 state->btps_lowkey->t_info = sizeof(IndexTupleData);
1007 BTreeTupleSetNAtts(state->btps_lowkey, 0, false);
1008 }
1009
1010 /*
1011 * Add the new item into the current page.
1012 */
1013 last_off = OffsetNumberNext(last_off);
1014 _bt_sortaddtup(npage, itupsz, itup, last_off,
1015 !isleaf && last_off == P_FIRSTKEY);
1016
1017 state->btps_buf = nbuf;
1018 state->btps_blkno = nblkno;
1019 state->btps_lastoff = last_off;
1020}
1021
1022/*
1023 * Finalize pending posting list tuple, and add it to the index. Final tuple
1024 * is based on saved base tuple, and saved list of heap TIDs.
1025 *
1026 * This is almost like _bt_dedup_finish_pending(), but it adds a new tuple
1027 * using _bt_buildadd().
1028 */
1029static void
1031 BTDedupState dstate)
1032{
1033 Assert(dstate->nitems > 0);
1034
1035 if (dstate->nitems == 1)
1036 _bt_buildadd(wstate, state, dstate->base, 0);
1037 else
1038 {
1039 IndexTuple postingtuple;
1040 Size truncextra;
1041
1042 /* form a tuple with a posting list */
1043 postingtuple = _bt_form_posting(dstate->base,
1044 dstate->htids,
1045 dstate->nhtids);
1046 /* Calculate posting list overhead */
1047 truncextra = IndexTupleSize(postingtuple) -
1048 BTreeTupleGetPostingOffset(postingtuple);
1049
1050 _bt_buildadd(wstate, state, postingtuple, truncextra);
1051 pfree(postingtuple);
1052 }
1053
1054 dstate->nmaxitems = 0;
1055 dstate->nhtids = 0;
1056 dstate->nitems = 0;
1057 dstate->phystupsize = 0;
1058}
1059
1060/*
1061 * Finish writing out the completed btree.
1062 */
1063static void
1065{
1066 BTPageState *s;
1067 BlockNumber rootblkno = P_NONE;
1068 uint32 rootlevel = 0;
1069 BulkWriteBuffer metabuf;
1070
1071 /*
1072 * Each iteration of this loop completes one more level of the tree.
1073 */
1074 for (s = state; s != NULL; s = s->btps_next)
1075 {
1076 BlockNumber blkno;
1077 BTPageOpaque opaque;
1078
1079 blkno = s->btps_blkno;
1080 opaque = BTPageGetOpaque((Page) s->btps_buf);
1081
1082 /*
1083 * We have to link the last page on this level to somewhere.
1084 *
1085 * If we're at the top, it's the root, so attach it to the metapage.
1086 * Otherwise, add an entry for it to its parent using its low key.
1087 * This may cause the last page of the parent level to split, but
1088 * that's not a problem -- we haven't gotten to it yet.
1089 */
1090 if (s->btps_next == NULL)
1091 {
1092 opaque->btpo_flags |= BTP_ROOT;
1093 rootblkno = blkno;
1094 rootlevel = s->btps_level;
1095 }
1096 else
1097 {
1100 BTreeTupleGetNAtts(s->btps_lowkey, wstate->index) > 0) ||
1101 P_LEFTMOST(opaque));
1102 Assert(BTreeTupleGetNAtts(s->btps_lowkey, wstate->index) == 0 ||
1103 !P_LEFTMOST(opaque));
1105 _bt_buildadd(wstate, s->btps_next, s->btps_lowkey, 0);
1106 pfree(s->btps_lowkey);
1107 s->btps_lowkey = NULL;
1108 }
1109
1110 /*
1111 * This is the rightmost page, so the ItemId array needs to be slid
1112 * back one slot. Then we can dump out the page.
1113 */
1115 _bt_blwritepage(wstate, s->btps_buf, s->btps_blkno);
1116 s->btps_buf = NULL; /* writepage took ownership of the buffer */
1117 }
1118
1119 /*
1120 * As the last step in the process, construct the metapage and make it
1121 * point to the new root (unless we had no data at all, in which case it's
1122 * set to point to "P_NONE"). This changes the index to the "valid" state
1123 * by filling in a valid magic number in the metapage.
1124 */
1125 metabuf = smgr_bulk_get_buf(wstate->bulkstate);
1126 _bt_initmetapage((Page) metabuf, rootblkno, rootlevel,
1127 wstate->inskey->allequalimage);
1128 _bt_blwritepage(wstate, metabuf, BTREE_METAPAGE);
1129}
1130
1131/*
1132 * Read tuples in correct sort order from tuplesort, and load them into
1133 * btree leaves.
1134 */
1135static void
1136_bt_load(BTWriteState *wstate, BTSpool *btspool, BTSpool *btspool2)
1137{
1138 BTPageState *state = NULL;
1139 bool merge = (btspool2 != NULL);
1140 IndexTuple itup,
1141 itup2 = NULL;
1142 bool load1;
1143 TupleDesc tupdes = RelationGetDescr(wstate->index);
1144 int i,
1146 SortSupport sortKeys;
1147 int64 tuples_done = 0;
1148 bool deduplicate;
1149
1150 wstate->bulkstate = smgr_bulk_start_rel(wstate->index, MAIN_FORKNUM);
1151
1152 deduplicate = wstate->inskey->allequalimage && !btspool->isunique &&
1154
1155 if (merge)
1156 {
1157 /*
1158 * Another BTSpool for dead tuples exists. Now we have to merge
1159 * btspool and btspool2.
1160 */
1161
1162 /* the preparation of merge */
1163 itup = tuplesort_getindextuple(btspool->sortstate, true);
1164 itup2 = tuplesort_getindextuple(btspool2->sortstate, true);
1165
1166 /* Prepare SortSupport data for each column */
1167 sortKeys = (SortSupport) palloc0(keysz * sizeof(SortSupportData));
1168
1169 for (i = 0; i < keysz; i++)
1170 {
1171 SortSupport sortKey = sortKeys + i;
1172 ScanKey scanKey = wstate->inskey->scankeys + i;
1173 bool reverse;
1174
1175 sortKey->ssup_cxt = CurrentMemoryContext;
1176 sortKey->ssup_collation = scanKey->sk_collation;
1177 sortKey->ssup_nulls_first =
1178 (scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
1179 sortKey->ssup_attno = scanKey->sk_attno;
1180 /* Abbreviation is not supported here */
1181 sortKey->abbreviate = false;
1182
1183 Assert(sortKey->ssup_attno != 0);
1184
1185 reverse = (scanKey->sk_flags & SK_BT_DESC) != 0;
1186
1187 PrepareSortSupportFromIndexRel(wstate->index, reverse, sortKey);
1188 }
1189
1190 for (;;)
1191 {
1192 load1 = true; /* load BTSpool next ? */
1193 if (itup2 == NULL)
1194 {
1195 if (itup == NULL)
1196 break;
1197 }
1198 else if (itup != NULL)
1199 {
1200 int32 compare = 0;
1201
1202 for (i = 1; i <= keysz; i++)
1203 {
1204 SortSupport entry;
1205 Datum attrDatum1,
1206 attrDatum2;
1207 bool isNull1,
1208 isNull2;
1209
1210 entry = sortKeys + i - 1;
1211 attrDatum1 = index_getattr(itup, i, tupdes, &isNull1);
1212 attrDatum2 = index_getattr(itup2, i, tupdes, &isNull2);
1213
1214 compare = ApplySortComparator(attrDatum1, isNull1,
1215 attrDatum2, isNull2,
1216 entry);
1217 if (compare > 0)
1218 {
1219 load1 = false;
1220 break;
1221 }
1222 else if (compare < 0)
1223 break;
1224 }
1225
1226 /*
1227 * If key values are equal, we sort on ItemPointer. This is
1228 * required for btree indexes, since heap TID is treated as an
1229 * implicit last key attribute in order to ensure that all
1230 * keys in the index are physically unique.
1231 */
1232 if (compare == 0)
1233 {
1234 compare = ItemPointerCompare(&itup->t_tid, &itup2->t_tid);
1235 Assert(compare != 0);
1236 if (compare > 0)
1237 load1 = false;
1238 }
1239 }
1240 else
1241 load1 = false;
1242
1243 /* When we see first tuple, create first index page */
1244 if (state == NULL)
1245 state = _bt_pagestate(wstate, 0);
1246
1247 if (load1)
1248 {
1249 _bt_buildadd(wstate, state, itup, 0);
1250 itup = tuplesort_getindextuple(btspool->sortstate, true);
1251 }
1252 else
1253 {
1254 _bt_buildadd(wstate, state, itup2, 0);
1255 itup2 = tuplesort_getindextuple(btspool2->sortstate, true);
1256 }
1257
1258 /* Report progress */
1260 ++tuples_done);
1261 }
1262 pfree(sortKeys);
1263 }
1264 else if (deduplicate)
1265 {
1266 /* merge is unnecessary, deduplicate into posting lists */
1267 BTDedupState dstate;
1268
1269 dstate = (BTDedupState) palloc(sizeof(BTDedupStateData));
1270 dstate->deduplicate = true; /* unused */
1271 dstate->nmaxitems = 0; /* unused */
1272 dstate->maxpostingsize = 0; /* set later */
1273 /* Metadata about base tuple of current pending posting list */
1274 dstate->base = NULL;
1275 dstate->baseoff = InvalidOffsetNumber; /* unused */
1276 dstate->basetupsize = 0;
1277 /* Metadata about current pending posting list TIDs */
1278 dstate->htids = NULL;
1279 dstate->nhtids = 0;
1280 dstate->nitems = 0;
1281 dstate->phystupsize = 0; /* unused */
1282 dstate->nintervals = 0; /* unused */
1283
1284 while ((itup = tuplesort_getindextuple(btspool->sortstate,
1285 true)) != NULL)
1286 {
1287 /* When we see first tuple, create first index page */
1288 if (state == NULL)
1289 {
1290 state = _bt_pagestate(wstate, 0);
1291
1292 /*
1293 * Limit size of posting list tuples to 1/10 space we want to
1294 * leave behind on the page, plus space for final item's line
1295 * pointer. This is equal to the space that we'd like to
1296 * leave behind on each leaf page when fillfactor is 90,
1297 * allowing us to get close to fillfactor% space utilization
1298 * when there happen to be a great many duplicates. (This
1299 * makes higher leaf fillfactor settings ineffective when
1300 * building indexes that have many duplicates, but packing
1301 * leaf pages full with few very large tuples doesn't seem
1302 * like a useful goal.)
1303 */
1304 dstate->maxpostingsize = MAXALIGN_DOWN((BLCKSZ * 10 / 100)) -
1305 sizeof(ItemIdData);
1306 Assert(dstate->maxpostingsize <= BTMaxItemSize &&
1307 dstate->maxpostingsize <= INDEX_SIZE_MASK);
1308 dstate->htids = palloc(dstate->maxpostingsize);
1309
1310 /* start new pending posting list with itup copy */
1313 }
1314 else if (_bt_keep_natts_fast(wstate->index, dstate->base,
1315 itup) > keysz &&
1316 _bt_dedup_save_htid(dstate, itup))
1317 {
1318 /*
1319 * Tuple is equal to base tuple of pending posting list. Heap
1320 * TID from itup has been saved in state.
1321 */
1322 }
1323 else
1324 {
1325 /*
1326 * Tuple is not equal to pending posting list tuple, or
1327 * _bt_dedup_save_htid() opted to not merge current item into
1328 * pending posting list.
1329 */
1330 _bt_sort_dedup_finish_pending(wstate, state, dstate);
1331 pfree(dstate->base);
1332
1333 /* start new pending posting list with itup copy */
1336 }
1337
1338 /* Report progress */
1340 ++tuples_done);
1341 }
1342
1343 if (state)
1344 {
1345 /*
1346 * Handle the last item (there must be a last item when the
1347 * tuplesort returned one or more tuples)
1348 */
1349 _bt_sort_dedup_finish_pending(wstate, state, dstate);
1350 pfree(dstate->base);
1351 pfree(dstate->htids);
1352 }
1353
1354 pfree(dstate);
1355 }
1356 else
1357 {
1358 /* merging and deduplication are both unnecessary */
1359 while ((itup = tuplesort_getindextuple(btspool->sortstate,
1360 true)) != NULL)
1361 {
1362 /* When we see first tuple, create first index page */
1363 if (state == NULL)
1364 state = _bt_pagestate(wstate, 0);
1365
1366 _bt_buildadd(wstate, state, itup, 0);
1367
1368 /* Report progress */
1370 ++tuples_done);
1371 }
1372 }
1373
1374 /* Close down final pages and write the metapage */
1375 _bt_uppershutdown(wstate, state);
1376 smgr_bulk_finish(wstate->bulkstate);
1377}
1378
1379/*
1380 * Create parallel context, and launch workers for leader.
1381 *
1382 * buildstate argument should be initialized (with the exception of the
1383 * tuplesort state in spools, which may later be created based on shared
1384 * state initially set up here).
1385 *
1386 * isconcurrent indicates if operation is CREATE INDEX CONCURRENTLY.
1387 *
1388 * request is the target number of parallel worker processes to launch.
1389 *
1390 * Sets buildstate's BTLeader, which caller must use to shut down parallel
1391 * mode by passing it to _bt_end_parallel() at the very end of its index
1392 * build. If not even a single worker process can be launched, this is
1393 * never set, and caller should proceed with a serial index build.
1394 */
1395static void
1396_bt_begin_parallel(BTBuildState *buildstate, bool isconcurrent, int request)
1397{
1398 ParallelContext *pcxt;
1399 int scantuplesortstates;
1400 Snapshot snapshot;
1401 Size estbtshared;
1402 Size estsort;
1403 BTShared *btshared;
1404 Sharedsort *sharedsort;
1405 Sharedsort *sharedsort2;
1406 BTSpool *btspool = buildstate->spool;
1407 BTLeader *btleader = (BTLeader *) palloc0(sizeof(BTLeader));
1408 WalUsage *walusage;
1409 BufferUsage *bufferusage;
1410 bool leaderparticipates = true;
1411 int querylen;
1412
1413#ifdef DISABLE_LEADER_PARTICIPATION
1414 leaderparticipates = false;
1415#endif
1416
1417 /*
1418 * Enter parallel mode, and create context for parallel build of btree
1419 * index
1420 */
1422 Assert(request > 0);
1423 pcxt = CreateParallelContext("postgres", "_bt_parallel_build_main",
1424 request);
1425
1426 scantuplesortstates = leaderparticipates ? request + 1 : request;
1427
1428 /*
1429 * Prepare for scan of the base relation. In a normal index build, we use
1430 * SnapshotAny because we must retrieve all tuples and do our own time
1431 * qual checks (because we have to index RECENTLY_DEAD tuples). In a
1432 * concurrent build, we take a regular MVCC snapshot and index whatever's
1433 * live according to that.
1434 */
1435 if (!isconcurrent)
1436 snapshot = SnapshotAny;
1437 else
1439
1440 /*
1441 * Estimate size for our own PARALLEL_KEY_BTREE_SHARED workspace, and
1442 * PARALLEL_KEY_TUPLESORT tuplesort workspace
1443 */
1444 estbtshared = _bt_parallel_estimate_shared(btspool->heap, snapshot);
1445 shm_toc_estimate_chunk(&pcxt->estimator, estbtshared);
1446 estsort = tuplesort_estimate_shared(scantuplesortstates);
1447 shm_toc_estimate_chunk(&pcxt->estimator, estsort);
1448
1449 /*
1450 * Unique case requires a second spool, and so we may have to account for
1451 * another shared workspace for that -- PARALLEL_KEY_TUPLESORT_SPOOL2
1452 */
1453 if (!btspool->isunique)
1455 else
1456 {
1457 shm_toc_estimate_chunk(&pcxt->estimator, estsort);
1459 }
1460
1461 /*
1462 * Estimate space for WalUsage and BufferUsage -- PARALLEL_KEY_WAL_USAGE
1463 * and PARALLEL_KEY_BUFFER_USAGE.
1464 *
1465 * If there are no extensions loaded that care, we could skip this. We
1466 * have no way of knowing whether anyone's looking at pgWalUsage or
1467 * pgBufferUsage, so do it unconditionally.
1468 */
1470 mul_size(sizeof(WalUsage), pcxt->nworkers));
1473 mul_size(sizeof(BufferUsage), pcxt->nworkers));
1475
1476 /* Finally, estimate PARALLEL_KEY_QUERY_TEXT space */
1478 {
1479 querylen = strlen(debug_query_string);
1480 shm_toc_estimate_chunk(&pcxt->estimator, querylen + 1);
1482 }
1483 else
1484 querylen = 0; /* keep compiler quiet */
1485
1486 /* Everyone's had a chance to ask for space, so now create the DSM */
1488
1489 /* If no DSM segment was available, back out (do serial build) */
1490 if (pcxt->seg == NULL)
1491 {
1492 if (IsMVCCSnapshot(snapshot))
1493 UnregisterSnapshot(snapshot);
1496 return;
1497 }
1498
1499 /* Store shared build state, for which we reserved space */
1500 btshared = (BTShared *) shm_toc_allocate(pcxt->toc, estbtshared);
1501 /* Initialize immutable state */
1502 btshared->heaprelid = RelationGetRelid(btspool->heap);
1503 btshared->indexrelid = RelationGetRelid(btspool->index);
1504 btshared->isunique = btspool->isunique;
1505 btshared->nulls_not_distinct = btspool->nulls_not_distinct;
1506 btshared->isconcurrent = isconcurrent;
1507 btshared->scantuplesortstates = scantuplesortstates;
1508 btshared->queryid = pgstat_get_my_query_id();
1510 SpinLockInit(&btshared->mutex);
1511 /* Initialize mutable state */
1512 btshared->nparticipantsdone = 0;
1513 btshared->reltuples = 0.0;
1514 btshared->havedead = false;
1515 btshared->indtuples = 0.0;
1516 btshared->brokenhotchain = false;
1519 snapshot);
1520
1521 /*
1522 * Store shared tuplesort-private state, for which we reserved space.
1523 * Then, initialize opaque state using tuplesort routine.
1524 */
1525 sharedsort = (Sharedsort *) shm_toc_allocate(pcxt->toc, estsort);
1526 tuplesort_initialize_shared(sharedsort, scantuplesortstates,
1527 pcxt->seg);
1528
1530 shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLESORT, sharedsort);
1531
1532 /* Unique case requires a second spool, and associated shared state */
1533 if (!btspool->isunique)
1534 sharedsort2 = NULL;
1535 else
1536 {
1537 /*
1538 * Store additional shared tuplesort-private state, for which we
1539 * reserved space. Then, initialize opaque state using tuplesort
1540 * routine.
1541 */
1542 sharedsort2 = (Sharedsort *) shm_toc_allocate(pcxt->toc, estsort);
1543 tuplesort_initialize_shared(sharedsort2, scantuplesortstates,
1544 pcxt->seg);
1545
1547 }
1548
1549 /* Store query string for workers */
1551 {
1552 char *sharedquery;
1553
1554 sharedquery = (char *) shm_toc_allocate(pcxt->toc, querylen + 1);
1555 memcpy(sharedquery, debug_query_string, querylen + 1);
1556 shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, sharedquery);
1557 }
1558
1559 /*
1560 * Allocate space for each worker's WalUsage and BufferUsage; no need to
1561 * initialize.
1562 */
1563 walusage = shm_toc_allocate(pcxt->toc,
1564 mul_size(sizeof(WalUsage), pcxt->nworkers));
1565 shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage);
1566 bufferusage = shm_toc_allocate(pcxt->toc,
1567 mul_size(sizeof(BufferUsage), pcxt->nworkers));
1568 shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufferusage);
1569
1570 /* Launch workers, saving status for leader/caller */
1572 btleader->pcxt = pcxt;
1573 btleader->nparticipanttuplesorts = pcxt->nworkers_launched;
1574 if (leaderparticipates)
1575 btleader->nparticipanttuplesorts++;
1576 btleader->btshared = btshared;
1577 btleader->sharedsort = sharedsort;
1578 btleader->sharedsort2 = sharedsort2;
1579 btleader->snapshot = snapshot;
1580 btleader->walusage = walusage;
1581 btleader->bufferusage = bufferusage;
1582
1583 /* If no workers were successfully launched, back out (do serial build) */
1584 if (pcxt->nworkers_launched == 0)
1585 {
1586 _bt_end_parallel(btleader);
1587 return;
1588 }
1589
1590 /* Save leader state now that it's clear build will be parallel */
1591 buildstate->btleader = btleader;
1592
1593 /* Join heap scan ourselves */
1594 if (leaderparticipates)
1596
1597 /*
1598 * Caller needs to wait for all launched workers when we return. Make
1599 * sure that the failure-to-start case will not hang forever.
1600 */
1602}
1603
1604/*
1605 * Shut down workers, destroy parallel context, and end parallel mode.
1606 */
1607static void
1609{
1610 int i;
1611
1612 /* Shutdown worker processes */
1614
1615 /*
1616 * Next, accumulate WAL usage. (This must wait for the workers to finish,
1617 * or we might get incomplete data.)
1618 */
1619 for (i = 0; i < btleader->pcxt->nworkers_launched; i++)
1620 InstrAccumParallelQuery(&btleader->bufferusage[i], &btleader->walusage[i]);
1621
1622 /* Free last reference to MVCC snapshot, if one was used */
1623 if (IsMVCCSnapshot(btleader->snapshot))
1624 UnregisterSnapshot(btleader->snapshot);
1625 DestroyParallelContext(btleader->pcxt);
1627}
1628
1629/*
1630 * Returns size of shared memory required to store state for a parallel
1631 * btree index build based on the snapshot its parallel scan will use.
1632 */
1633static Size
1635{
1636 /* c.f. shm_toc_allocate as to why BUFFERALIGN is used */
1637 return add_size(BUFFERALIGN(sizeof(BTShared)),
1638 table_parallelscan_estimate(heap, snapshot));
1639}
1640
1641/*
1642 * Within leader, wait for end of heap scan.
1643 *
1644 * When called, parallel heap scan started by _bt_begin_parallel() will
1645 * already be underway within worker processes (when leader participates
1646 * as a worker, we should end up here just as workers are finishing).
1647 *
1648 * Fills in fields needed for ambuild statistics, and lets caller set
1649 * field indicating that some worker encountered a broken HOT chain.
1650 *
1651 * Returns the total number of heap tuples scanned.
1652 */
1653static double
1654_bt_parallel_heapscan(BTBuildState *buildstate, bool *brokenhotchain)
1655{
1656 BTShared *btshared = buildstate->btleader->btshared;
1657 int nparticipanttuplesorts;
1658 double reltuples;
1659
1660 nparticipanttuplesorts = buildstate->btleader->nparticipanttuplesorts;
1661 for (;;)
1662 {
1663 SpinLockAcquire(&btshared->mutex);
1664 if (btshared->nparticipantsdone == nparticipanttuplesorts)
1665 {
1666 buildstate->havedead = btshared->havedead;
1667 buildstate->indtuples = btshared->indtuples;
1668 *brokenhotchain = btshared->brokenhotchain;
1669 reltuples = btshared->reltuples;
1670 SpinLockRelease(&btshared->mutex);
1671 break;
1672 }
1673 SpinLockRelease(&btshared->mutex);
1674
1676 WAIT_EVENT_PARALLEL_CREATE_INDEX_SCAN);
1677 }
1678
1680
1681 return reltuples;
1682}
1683
1684/*
1685 * Within leader, participate as a parallel worker.
1686 */
1687static void
1689{
1690 BTLeader *btleader = buildstate->btleader;
1691 BTSpool *leaderworker;
1692 BTSpool *leaderworker2;
1693 int sortmem;
1694
1695 /* Allocate memory and initialize private spool */
1696 leaderworker = (BTSpool *) palloc0(sizeof(BTSpool));
1697 leaderworker->heap = buildstate->spool->heap;
1698 leaderworker->index = buildstate->spool->index;
1699 leaderworker->isunique = buildstate->spool->isunique;
1700 leaderworker->nulls_not_distinct = buildstate->spool->nulls_not_distinct;
1701
1702 /* Initialize second spool, if required */
1703 if (!btleader->btshared->isunique)
1704 leaderworker2 = NULL;
1705 else
1706 {
1707 /* Allocate memory for worker's own private secondary spool */
1708 leaderworker2 = (BTSpool *) palloc0(sizeof(BTSpool));
1709
1710 /* Initialize worker's own secondary spool */
1711 leaderworker2->heap = leaderworker->heap;
1712 leaderworker2->index = leaderworker->index;
1713 leaderworker2->isunique = false;
1714 }
1715
1716 /*
1717 * Might as well use reliable figure when doling out maintenance_work_mem
1718 * (when requested number of workers were not launched, this will be
1719 * somewhat higher than it is for other workers).
1720 */
1721 sortmem = maintenance_work_mem / btleader->nparticipanttuplesorts;
1722
1723 /* Perform work common to all participants */
1724 _bt_parallel_scan_and_sort(leaderworker, leaderworker2, btleader->btshared,
1725 btleader->sharedsort, btleader->sharedsort2,
1726 sortmem, true);
1727
1728#ifdef BTREE_BUILD_STATS
1730 {
1731 ShowUsage("BTREE BUILD (Leader Partial Spool) STATISTICS");
1732 ResetUsage();
1733 }
1734#endif /* BTREE_BUILD_STATS */
1735}
1736
1737/*
1738 * Perform work within a launched parallel process.
1739 */
1740void
1742{
1743 char *sharedquery;
1744 BTSpool *btspool;
1745 BTSpool *btspool2;
1746 BTShared *btshared;
1747 Sharedsort *sharedsort;
1748 Sharedsort *sharedsort2;
1749 Relation heapRel;
1750 Relation indexRel;
1751 LOCKMODE heapLockmode;
1752 LOCKMODE indexLockmode;
1753 WalUsage *walusage;
1754 BufferUsage *bufferusage;
1755 int sortmem;
1756
1757#ifdef BTREE_BUILD_STATS
1759 ResetUsage();
1760#endif /* BTREE_BUILD_STATS */
1761
1762 /*
1763 * The only possible status flag that can be set to the parallel worker is
1764 * PROC_IN_SAFE_IC.
1765 */
1766 Assert((MyProc->statusFlags == 0) ||
1768
1769 /* Set debug_query_string for individual workers first */
1770 sharedquery = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, true);
1771 debug_query_string = sharedquery;
1772
1773 /* Report the query string from leader */
1775
1776 /* Look up nbtree shared state */
1777 btshared = shm_toc_lookup(toc, PARALLEL_KEY_BTREE_SHARED, false);
1778
1779 /* Open relations using lock modes known to be obtained by index.c */
1780 if (!btshared->isconcurrent)
1781 {
1782 heapLockmode = ShareLock;
1783 indexLockmode = AccessExclusiveLock;
1784 }
1785 else
1786 {
1787 heapLockmode = ShareUpdateExclusiveLock;
1788 indexLockmode = RowExclusiveLock;
1789 }
1790
1791 /* Track query ID */
1792 pgstat_report_query_id(btshared->queryid, false);
1793
1794 /* Open relations within worker */
1795 heapRel = table_open(btshared->heaprelid, heapLockmode);
1796 indexRel = index_open(btshared->indexrelid, indexLockmode);
1797
1798 /* Initialize worker's own spool */
1799 btspool = (BTSpool *) palloc0(sizeof(BTSpool));
1800 btspool->heap = heapRel;
1801 btspool->index = indexRel;
1802 btspool->isunique = btshared->isunique;
1803 btspool->nulls_not_distinct = btshared->nulls_not_distinct;
1804
1805 /* Look up shared state private to tuplesort.c */
1806 sharedsort = shm_toc_lookup(toc, PARALLEL_KEY_TUPLESORT, false);
1807 tuplesort_attach_shared(sharedsort, seg);
1808 if (!btshared->isunique)
1809 {
1810 btspool2 = NULL;
1811 sharedsort2 = NULL;
1812 }
1813 else
1814 {
1815 /* Allocate memory for worker's own private secondary spool */
1816 btspool2 = (BTSpool *) palloc0(sizeof(BTSpool));
1817
1818 /* Initialize worker's own secondary spool */
1819 btspool2->heap = btspool->heap;
1820 btspool2->index = btspool->index;
1821 btspool2->isunique = false;
1822 /* Look up shared state private to tuplesort.c */
1823 sharedsort2 = shm_toc_lookup(toc, PARALLEL_KEY_TUPLESORT_SPOOL2, false);
1824 tuplesort_attach_shared(sharedsort2, seg);
1825 }
1826
1827 /* Prepare to track buffer usage during parallel execution */
1829
1830 /* Perform sorting of spool, and possibly a spool2 */
1831 sortmem = maintenance_work_mem / btshared->scantuplesortstates;
1832 _bt_parallel_scan_and_sort(btspool, btspool2, btshared, sharedsort,
1833 sharedsort2, sortmem, false);
1834
1835 /* Report WAL/buffer usage during parallel execution */
1836 bufferusage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false);
1837 walusage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false);
1839 &walusage[ParallelWorkerNumber]);
1840
1841#ifdef BTREE_BUILD_STATS
1843 {
1844 ShowUsage("BTREE BUILD (Worker Partial Spool) STATISTICS");
1845 ResetUsage();
1846 }
1847#endif /* BTREE_BUILD_STATS */
1848
1849 index_close(indexRel, indexLockmode);
1850 table_close(heapRel, heapLockmode);
1851}
1852
1853/*
1854 * Perform a worker's portion of a parallel sort.
1855 *
1856 * This generates a tuplesort for passed btspool, and a second tuplesort
1857 * state if a second btspool is need (i.e. for unique index builds). All
1858 * other spool fields should already be set when this is called.
1859 *
1860 * sortmem is the amount of working memory to use within each worker,
1861 * expressed in KBs.
1862 *
1863 * When this returns, workers are done, and need only release resources.
1864 */
1865static void
1867 BTShared *btshared, Sharedsort *sharedsort,
1868 Sharedsort *sharedsort2, int sortmem, bool progress)
1869{
1870 SortCoordinate coordinate;
1871 BTBuildState buildstate;
1872 TableScanDesc scan;
1873 double reltuples;
1874 IndexInfo *indexInfo;
1875
1876 /* Initialize local tuplesort coordination state */
1877 coordinate = palloc0(sizeof(SortCoordinateData));
1878 coordinate->isWorker = true;
1879 coordinate->nParticipants = -1;
1880 coordinate->sharedsort = sharedsort;
1881
1882 /* Begin "partial" tuplesort */
1883 btspool->sortstate = tuplesort_begin_index_btree(btspool->heap,
1884 btspool->index,
1885 btspool->isunique,
1886 btspool->nulls_not_distinct,
1887 sortmem, coordinate,
1889
1890 /*
1891 * Just as with serial case, there may be a second spool. If so, a
1892 * second, dedicated spool2 partial tuplesort is required.
1893 */
1894 if (btspool2)
1895 {
1896 SortCoordinate coordinate2;
1897
1898 /*
1899 * We expect that the second one (for dead tuples) won't get very
1900 * full, so we give it only work_mem (unless sortmem is less for
1901 * worker). Worker processes are generally permitted to allocate
1902 * work_mem independently.
1903 */
1904 coordinate2 = palloc0(sizeof(SortCoordinateData));
1905 coordinate2->isWorker = true;
1906 coordinate2->nParticipants = -1;
1907 coordinate2->sharedsort = sharedsort2;
1908 btspool2->sortstate =
1909 tuplesort_begin_index_btree(btspool->heap, btspool->index, false, false,
1910 Min(sortmem, work_mem), coordinate2,
1911 false);
1912 }
1913
1914 /* Fill in buildstate for _bt_build_callback() */
1915 buildstate.isunique = btshared->isunique;
1916 buildstate.nulls_not_distinct = btshared->nulls_not_distinct;
1917 buildstate.havedead = false;
1918 buildstate.heap = btspool->heap;
1919 buildstate.spool = btspool;
1920 buildstate.spool2 = btspool2;
1921 buildstate.indtuples = 0;
1922 buildstate.btleader = NULL;
1923
1924 /* Join parallel scan */
1925 indexInfo = BuildIndexInfo(btspool->index);
1926 indexInfo->ii_Concurrent = btshared->isconcurrent;
1927 scan = table_beginscan_parallel(btspool->heap,
1929 reltuples = table_index_build_scan(btspool->heap, btspool->index, indexInfo,
1931 &buildstate, scan);
1932
1933 /* Execute this worker's part of the sort */
1934 if (progress)
1938 if (btspool2)
1939 {
1940 if (progress)
1944 }
1945
1946 /*
1947 * Done. Record ambuild statistics, and whether we encountered a broken
1948 * HOT chain.
1949 */
1950 SpinLockAcquire(&btshared->mutex);
1951 btshared->nparticipantsdone++;
1952 btshared->reltuples += reltuples;
1953 if (buildstate.havedead)
1954 btshared->havedead = true;
1955 btshared->indtuples += buildstate.indtuples;
1956 if (indexInfo->ii_BrokenHotChain)
1957 btshared->brokenhotchain = true;
1958 SpinLockRelease(&btshared->mutex);
1959
1960 /* Notify leader */
1962
1963 /* We can end tuplesorts immediately */
1964 tuplesort_end(btspool->sortstate);
1965 if (btspool2)
1966 tuplesort_end(btspool2->sortstate);
1967}
int ParallelWorkerNumber
Definition: parallel.c:115
void InitializeParallelDSM(ParallelContext *pcxt)
Definition: parallel.c:211
void WaitForParallelWorkersToFinish(ParallelContext *pcxt)
Definition: parallel.c:796
void LaunchParallelWorkers(ParallelContext *pcxt)
Definition: parallel.c:573
void DestroyParallelContext(ParallelContext *pcxt)
Definition: parallel.c:950
ParallelContext * CreateParallelContext(const char *library_name, const char *function_name, int nworkers)
Definition: parallel.c:173
void WaitForParallelWorkersToAttach(ParallelContext *pcxt)
Definition: parallel.c:693
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_report_query_id(int64 query_id, bool force)
int64 pgstat_get_my_query_id(void)
void pgstat_report_activity(BackendState state, const char *cmd_str)
@ STATE_RUNNING
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:153
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:291
Size PageGetFreeSpace(const PageData *page)
Definition: bufpage.c:906
bool PageIndexTupleOverwrite(Page page, OffsetNumber offnum, const void *newtup, Size newsize)
Definition: bufpage.c:1404
PageHeaderData * PageHeader
Definition: bufpage.h:173
static void * PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:353
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
PageData * Page
Definition: bufpage.h:81
#define PageAddItem(page, item, size, offsetNumber, overwrite, is_heap)
Definition: bufpage.h:471
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:371
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:87
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:323
BulkWriteBuffer smgr_bulk_get_buf(BulkWriteState *bulkstate)
Definition: bulk_write.c:347
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:130
#define MAXALIGN_DOWN(LEN)
Definition: c.h:827
#define Min(x, y)
Definition: c.h:1008
#define MAXALIGN(LEN)
Definition: c.h:815
#define BUFFERALIGN(LEN)
Definition: c.h:817
int64_t int64
Definition: c.h:540
int32_t int32
Definition: c.h:539
#define unlikely(x)
Definition: c.h:407
uint32_t uint32
Definition: c.h:543
size_t Size
Definition: c.h:615
bool ConditionVariableCancelSleep(void)
void ConditionVariableInit(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
void ConditionVariableSignal(ConditionVariable *cv)
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
int maintenance_work_mem
Definition: globals.c:133
int work_mem
Definition: globals.c:131
bool log_btree_build_stats
Definition: guc_tables.c:525
Assert(PointerIsAligned(start, uint64))
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2428
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
IndexTuple CopyIndexTuple(IndexTuple source)
Definition: indextuple.c:547
void InstrAccumParallelQuery(BufferUsage *bufusage, WalUsage *walusage)
Definition: instrument.c:218
void InstrEndParallelQuery(BufferUsage *bufusage, WalUsage *walusage)
Definition: instrument.c:208
void InstrStartParallelQuery(void)
Definition: instrument.c:200
int i
Definition: isn.c:77
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
struct ItemIdData ItemIdData
#define ItemIdSetUnused(itemId)
Definition: itemid.h:128
int32 ItemPointerCompare(const ItemPointerData *arg1, const ItemPointerData *arg2)
Definition: itemptr.c:51
IndexTupleData * IndexTuple
Definition: itup.h:53
static Datum index_getattr(IndexTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: itup.h:131
struct IndexTupleData IndexTupleData
static Size IndexTupleSize(const IndexTupleData *itup)
Definition: itup.h:71
#define INDEX_SIZE_MASK
Definition: itup.h:65
int LOCKMODE
Definition: lockdefs.h:26
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ShareLock
Definition: lockdefs.h:40
#define RowExclusiveLock
Definition: lockdefs.h:38
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
bool _bt_dedup_save_htid(BTDedupState state, IndexTuple itup)
Definition: nbtdedup.c:484
void _bt_dedup_start_pending(BTDedupState state, IndexTuple base, OffsetNumber baseoff)
Definition: nbtdedup.c:433
IndexTuple _bt_form_posting(IndexTuple base, const ItemPointerData *htids, int nhtids)
Definition: nbtdedup.c:862
void _bt_pageinit(Page page, Size size)
Definition: nbtpage.c:1129
void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level, bool allequalimage)
Definition: nbtpage.c:67
#define BTGetDeduplicateItems(relation)
Definition: nbtree.h:1166
#define BTGetTargetPageFreeSpace(relation)
Definition: nbtree.h:1164
#define BTP_LEAF
Definition: nbtree.h:77
#define P_HIKEY
Definition: nbtree.h:368
#define PROGRESS_BTREE_PHASE_PERFORMSORT_2
Definition: nbtree.h:1179
#define PROGRESS_BTREE_PHASE_LEAF_LOAD
Definition: nbtree.h:1180
#define P_LEFTMOST(opaque)
Definition: nbtree.h:219
#define BTPageGetOpaque(page)
Definition: nbtree.h:74
#define BTP_ROOT
Definition: nbtree.h:78
static void BTreeTupleSetDownLink(IndexTuple pivot, BlockNumber blkno)
Definition: nbtree.h:563
#define PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN
Definition: nbtree.h:1177
#define PROGRESS_BTREE_PHASE_PERFORMSORT_1
Definition: nbtree.h:1178
static uint32 BTreeTupleGetPostingOffset(IndexTuple posting)
Definition: nbtree.h:530
#define P_NONE
Definition: nbtree.h:213
#define SK_BT_NULLS_FIRST
Definition: nbtree.h:1148
#define BTREE_METAPAGE
Definition: nbtree.h:149
#define SK_BT_DESC
Definition: nbtree.h:1147
BTDedupStateData * BTDedupState
Definition: nbtree.h:904
#define P_FIRSTKEY
Definition: nbtree.h:369
static void BTreeTupleSetNAtts(IndexTuple itup, uint16 nkeyatts, bool heaptid)
Definition: nbtree.h:596
#define BTMaxItemSize
Definition: nbtree.h:165
#define BTreeTupleGetNAtts(itup, rel)
Definition: nbtree.h:578
#define BTREE_NONLEAF_FILLFACTOR
Definition: nbtree.h:202
#define PARALLEL_KEY_BUFFER_USAGE
Definition: nbtsort.c:67
#define ParallelTableScanFromBTShared(shared)
Definition: nbtsort.c:162
static void _bt_blwritepage(BTWriteState *wstate, BulkWriteBuffer buf, BlockNumber blkno)
Definition: nbtsort.c:638
static void _bt_slideleft(Page rightmostpage)
Definition: nbtsort.c:686
static BTPageState * _bt_pagestate(BTWriteState *wstate, uint32 level)
Definition: nbtsort.c:649
static void _bt_load(BTWriteState *wstate, BTSpool *btspool, BTSpool *btspool2)
Definition: nbtsort.c:1136
static void _bt_end_parallel(BTLeader *btleader)
Definition: nbtsort.c:1608
#define PARALLEL_KEY_TUPLESORT_SPOOL2
Definition: nbtsort.c:64
static void _bt_parallel_scan_and_sort(BTSpool *btspool, BTSpool *btspool2, BTShared *btshared, Sharedsort *sharedsort, Sharedsort *sharedsort2, int sortmem, bool progress)
Definition: nbtsort.c:1866
static Size _bt_parallel_estimate_shared(Relation heap, Snapshot snapshot)
Definition: nbtsort.c:1634
struct BTPageState BTPageState
static void _bt_sort_dedup_finish_pending(BTWriteState *wstate, BTPageState *state, BTDedupState dstate)
Definition: nbtsort.c:1030
struct BTSpool BTSpool
static double _bt_parallel_heapscan(BTBuildState *buildstate, bool *brokenhotchain)
Definition: nbtsort.c:1654
static void _bt_leafbuild(BTSpool *btspool, BTSpool *btspool2)
Definition: nbtsort.c:539
#define PARALLEL_KEY_BTREE_SHARED
Definition: nbtsort.c:62
IndexBuildResult * btbuild(Relation heap, Relation index, IndexInfo *indexInfo)
Definition: nbtsort.c:296
static void _bt_begin_parallel(BTBuildState *buildstate, bool isconcurrent, int request)
Definition: nbtsort.c:1396
static void _bt_buildadd(BTWriteState *wstate, BTPageState *state, IndexTuple itup, Size truncextra)
Definition: nbtsort.c:786
struct BTBuildState BTBuildState
void _bt_parallel_build_main(dsm_segment *seg, shm_toc *toc)
Definition: nbtsort.c:1741
struct BTLeader BTLeader
static void _bt_build_callback(Relation index, ItemPointer tid, Datum *values, bool *isnull, bool tupleIsAlive, void *state)
Definition: nbtsort.c:580
static double _bt_spools_heapscan(Relation heap, Relation index, BTBuildState *buildstate, IndexInfo *indexInfo)
Definition: nbtsort.c:366
static void _bt_spooldestroy(BTSpool *btspool)
Definition: nbtsort.c:518
static void _bt_spool(BTSpool *btspool, const ItemPointerData *self, const Datum *values, const bool *isnull)
Definition: nbtsort.c:528
static void _bt_uppershutdown(BTWriteState *wstate, BTPageState *state)
Definition: nbtsort.c:1064
#define PARALLEL_KEY_TUPLESORT
Definition: nbtsort.c:63
#define PARALLEL_KEY_QUERY_TEXT
Definition: nbtsort.c:65
#define PARALLEL_KEY_WAL_USAGE
Definition: nbtsort.c:66
static BulkWriteBuffer _bt_blnewpage(BTWriteState *wstate, uint32 level)
Definition: nbtsort.c:609
static void _bt_leader_participate_as_worker(BTBuildState *buildstate)
Definition: nbtsort.c:1688
struct BTWriteState BTWriteState
static void _bt_sortaddtup(Page page, Size itemsize, const IndexTupleData *itup, OffsetNumber itup_off, bool newfirstdataitem)
Definition: nbtsort.c:717
struct BTShared BTShared
void _bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace, Page page, IndexTuple newtup)
Definition: nbtutils.c:4309
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:97
IndexTuple _bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright, BTScanInsert itup_key)
Definition: nbtutils.c:3883
int _bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright)
Definition: nbtutils.c:4102
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:4366
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
#define OffsetNumberPrev(offsetNumber)
Definition: off.h:54
static pairingheap_node * merge(pairingheap *heap, pairingheap_node *a, pairingheap_node *b)
Definition: pairingheap.c:93
static char * buf
Definition: pg_test_fsync.c:72
static int progress
Definition: pgbench.c:262
const char * debug_query_string
Definition: postgres.c:89
void ShowUsage(const char *title)
Definition: postgres.c:5068
void ResetUsage(void)
Definition: postgres.c:5061
uint64_t Datum
Definition: postgres.h:70
unsigned int Oid
Definition: postgres_ext.h:32
#define PROC_IN_SAFE_IC
Definition: proc.h:59
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:89
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:125
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:90
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:88
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:124
#define RelationGetRelid(relation)
Definition: rel.h:515
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:534
@ MAIN_FORKNUM
Definition: relpath.h:58
void * shm_toc_allocate(shm_toc *toc, Size nbytes)
Definition: shm_toc.c:88
void shm_toc_insert(shm_toc *toc, uint64 key, void *address)
Definition: shm_toc.c:171
void * shm_toc_lookup(shm_toc *toc, uint64 key, bool noError)
Definition: shm_toc.c:232
#define shm_toc_estimate_chunk(e, sz)
Definition: shm_toc.h:51
#define shm_toc_estimate_keys(e, cnt)
Definition: shm_toc.h:53
Size add_size(Size s1, Size s2)
Definition: shmem.c:494
Size mul_size(Size s1, Size s2)
Definition: shmem.c:511
Snapshot GetTransactionSnapshot(void)
Definition: snapmgr.c:272
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:866
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:824
#define SnapshotAny
Definition: snapmgr.h:33
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:55
void PrepareSortSupportFromIndexRel(Relation indexRel, bool reverse, SortSupport ssup)
Definition: sortsupport.c:161
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
bool isunique
Definition: nbtsort.c:207
BTSpool * spool
Definition: nbtsort.c:211
BTLeader * btleader
Definition: nbtsort.c:225
bool nulls_not_distinct
Definition: nbtsort.c:208
bool havedead
Definition: nbtsort.c:209
Relation heap
Definition: nbtsort.c:210
BTSpool * spool2
Definition: nbtsort.c:217
double indtuples
Definition: nbtsort.c:218
Size maxpostingsize
Definition: nbtree.h:881
ItemPointer htids
Definition: nbtree.h:889
bool deduplicate
Definition: nbtree.h:879
OffsetNumber baseoff
Definition: nbtree.h:885
Size basetupsize
Definition: nbtree.h:886
IndexTuple base
Definition: nbtree.h:884
Size phystupsize
Definition: nbtree.h:892
ParallelContext * pcxt
Definition: nbtsort.c:171
BTShared * btshared
Definition: nbtsort.c:191
Sharedsort * sharedsort
Definition: nbtsort.c:192
Sharedsort * sharedsort2
Definition: nbtsort.c:193
int nparticipanttuplesorts
Definition: nbtsort.c:179
BufferUsage * bufferusage
Definition: nbtsort.c:196
Snapshot snapshot
Definition: nbtsort.c:194
WalUsage * walusage
Definition: nbtsort.c:195
BlockNumber btpo_next
Definition: nbtree.h:66
BlockNumber btpo_prev
Definition: nbtree.h:65
uint16 btpo_flags
Definition: nbtree.h:68
uint32 btpo_level
Definition: nbtree.h:67
BTCycleId btpo_cycleid
Definition: nbtree.h:69
IndexTuple btps_lowkey
Definition: nbtsort.c:236
Size btps_full
Definition: nbtsort.c:240
BulkWriteBuffer btps_buf
Definition: nbtsort.c:234
OffsetNumber btps_lastoff
Definition: nbtsort.c:237
Size btps_lastextra
Definition: nbtsort.c:238
BlockNumber btps_blkno
Definition: nbtsort.c:235
struct BTPageState * btps_next
Definition: nbtsort.c:241
uint32 btps_level
Definition: nbtsort.c:239
bool allequalimage
Definition: nbtree.h:798
ScanKeyData scankeys[INDEX_MAX_KEYS]
Definition: nbtree.h:804
slock_t mutex
Definition: nbtsort.c:125
bool isconcurrent
Definition: nbtsort.c:105
double indtuples
Definition: nbtsort.c:146
double reltuples
Definition: nbtsort.c:144
Oid heaprelid
Definition: nbtsort.c:101
bool brokenhotchain
Definition: nbtsort.c:147
int64 queryid
Definition: nbtsort.c:109
bool isunique
Definition: nbtsort.c:103
int nparticipantsdone
Definition: nbtsort.c:143
ConditionVariable workersdonecv
Definition: nbtsort.c:117
int scantuplesortstates
Definition: nbtsort.c:106
Oid indexrelid
Definition: nbtsort.c:102
bool havedead
Definition: nbtsort.c:145
bool nulls_not_distinct
Definition: nbtsort.c:104
bool isunique
Definition: nbtsort.c:85
bool nulls_not_distinct
Definition: nbtsort.c:86
Relation heap
Definition: nbtsort.c:83
Relation index
Definition: nbtsort.c:84
Tuplesortstate * sortstate
Definition: nbtsort.c:82
BulkWriteState * bulkstate
Definition: nbtsort.c:251
Relation heap
Definition: nbtsort.c:249
Relation index
Definition: nbtsort.c:250
BlockNumber btws_pages_alloced
Definition: nbtsort.c:253
BTScanInsert inskey
Definition: nbtsort.c:252
double heap_tuples
Definition: genam.h:59
double index_tuples
Definition: genam.h:60
bool ii_Unique
Definition: execnodes.h:200
bool ii_BrokenHotChain
Definition: execnodes.h:212
bool ii_NullsNotDistinct
Definition: execnodes.h:202
int ii_ParallelWorkers
Definition: execnodes.h:218
bool ii_Concurrent
Definition: execnodes.h:210
ItemPointerData t_tid
Definition: itup.h:37
unsigned short t_info
Definition: itup.h:49
uint8 statusFlags
Definition: proc.h:259
dsm_segment * seg
Definition: parallel.h:42
shm_toc_estimator estimator
Definition: parallel.h:41
shm_toc * toc
Definition: parallel.h:44
int nworkers_launched
Definition: parallel.h:37
int sk_flags
Definition: skey.h:66
Oid sk_collation
Definition: skey.h:70
AttrNumber sk_attno
Definition: skey.h:67
Sharedsort * sharedsort
Definition: tuplesort.h:59
AttrNumber ssup_attno
Definition: sortsupport.h:81
bool ssup_nulls_first
Definition: sortsupport.h:75
MemoryContext ssup_cxt
Definition: sortsupport.h:66
Definition: type.h:96
Definition: regguts.h:323
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_parallel(Relation relation, ParallelTableScanDesc pscan)
Definition: tableam.c:166
Size table_parallelscan_estimate(Relation rel, Snapshot snapshot)
Definition: tableam.c:131
void table_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan, Snapshot snapshot)
Definition: tableam.c:146
static double table_index_build_scan(Relation table_rel, Relation index_rel, IndexInfo *index_info, bool allow_sync, bool progress, IndexBuildCallback callback, void *callback_state, TableScanDesc scan)
Definition: tableam.h:1744
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1359
void tuplesort_initialize_shared(Sharedsort *shared, int nWorkers, dsm_segment *seg)
Definition: tuplesort.c:2932
Size tuplesort_estimate_shared(int nWorkers)
Definition: tuplesort.c:2911
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:947
void tuplesort_attach_shared(Sharedsort *shared, dsm_segment *seg)
Definition: tuplesort.c:2955
struct SortCoordinateData * SortCoordinate
Definition: tuplesort.h:62
#define TUPLESORT_NONE
Definition: tuplesort.h:94
IndexTuple tuplesort_getindextuple(Tuplesortstate *state, bool forward)
Tuplesortstate * tuplesort_begin_index_btree(Relation heapRel, Relation indexRel, bool enforceUnique, bool uniqueNullsNotDistinct, int workMem, SortCoordinate coordinate, int sortopt)
void tuplesort_putindextuplevalues(Tuplesortstate *state, Relation rel, const ItemPointerData *self, const Datum *values, const bool *isnull)
void ExitParallelMode(void)
Definition: xact.c:1065
void EnterParallelMode(void)
Definition: xact.c:1052