I am trying to do some simple analyses on the Kenneth French industry portfolios (first time with Pandas/Python), data is in txt format (see link in the code). Before I can do computations, first want to load it in a Pandas dataframe properly, but I've been struggling with this for hours:
import urllib.request
import os.path
import zipfile
import pandas as pd
import numpy as np
# paths
url = 'http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/48_Industry_Portfolios_CSV.zip'
csv_name = '48_Industry_Portfolios.CSV'
local_zipfile = '{0}/data.zip'.format(os.getcwd())
local_file = '{0}/{1}'.format(os.getcwd(), csv_name)
# download data
if not os.path.isfile(local_file):
print('Downloading and unzipping file!')
urllib.request.urlretrieve(url, local_zipfile)
zipfile.ZipFile(local_zipfile).extract(csv_name, os.path.dirname(local_file))
# read from file
df = pd.read_csv(local_file,skiprows=11)
df.rename(columns={'Unnamed: 0' : 'dates'}, inplace=True)
# build new dataframe
first_stop = df['dates'][df['dates']=='201412'].index[0]
df2 = df[:first_stop]
# convert date to datetime object
pd.to_datetime(df2['dates'], format = '%Y%m')
df2.index = df2.dates
All the columns, except dates, represent financial returns. However, due to the file formatting, these are now strings. According to Pandas docs, this should do the trick:
df2.convert_objects(convert_numeric=True)
But the columns remain strings. Other suggestions are to loop over the columns (see for example pandas convert strings to float for multiple columns in dataframe):
for d in df2.columns:
if d is not 'dates':
df2[d] = df2[d].map(lambda x: float(x)/100)
But this gives me the following warning:
home/<xxxx>/Downloads/pycharm-community-4.5/helpers/pydev/pydevconsole.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
try:
I have read the documentation on views vs copies, but having difficulty to understand why it is a problem in my case, but not in the code snippets in the question I linked to. Thanks
Edit:
df2=df2.convert_objects(convert_numeric=True)
Does the trick, although I receive a depreciation warning (strangely enough that is not in the docs at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.convert_objects.html)
Some of df2:
dates Agric Food Soda Beer Smoke Toys Fun \
dates
192607 192607 2.37 0.12 -99.99 -5.19 1.29 8.65 2.50
192608 192608 2.23 2.68 -99.99 27.03 6.50 16.81 -0.76
192609 192609 -0.57 1.58 -99.99 4.02 1.26 8.33 6.42
192610 192610 -0.46 -3.68 -99.99 -3.31 1.06 -1.40 -5.09
192611 192611 6.75 6.26 -99.99 7.29 4.55 0.00 1.82
Edit2: the solution is actually more simple than I thought:
df2.index = pd.to_datetime(df2['dates'], format = '%Y%m')
df2 = df2.astype(float)/100
convert_objects? e.g.df = df.convert_objects(convert_numeric=True)?df2looks like? Edit your question with at least a partial view of the data frame.