Skip to main content
Fixed the weird syntax highlighting (as a result, the diff looks more extensive than it really is - use view "Side-by-side Markdown" to compare).
Source Link
Peter Mortensen
  • 31.4k
  • 22
  • 110
  • 134

To add: You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.,

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

Running this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two
Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two

To add: You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.,

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

Running this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two

To add: You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.,

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

Running this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two
Active reading. Removed meta information (this belongs in comments).
Source Link
Peter Mortensen
  • 31.4k
  • 22
  • 110
  • 134

To append to this famous question (though a bit too late)add: You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.,

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

RunRunning this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two

To append to this famous question (though a bit too late): You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

Run this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two

To add: You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.,

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

Running this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two
Source Link
TuanDT
  • 1.7k
  • 13
  • 28

To append to this famous question (though a bit too late): You can also do df.groupby('column_name').get_group('column_desired_value').reset_index() to make a new data frame with specified column having a particular value. E.g.

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)

b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1) 
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)

Run this gives:

Original dataframe:
     A      B
0  foo    one
1  bar    one
2  foo    two
3  bar  three
4  foo    two
5  bar    two
6  foo    one
7  foo  three
Sub dataframe where B is two:
     A    B
0  foo  two
1  foo  two
2  bar  two