|
30 | 30 | "\n", |
31 | 31 | " ## [数据结构:图的存储结构之邻接矩阵](https://blog.csdn.net/jnu_simba/article/details/8866705)\n", |
32 | 32 | " \n", |
33 | | - " 图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维的数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。\n", |
| 33 | + "图的**邻接矩阵(Adjacency Matrix)**存储方式是用两个数组来表示图。一个一维的数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。\n", |
34 | 34 | " \n", |
35 | 35 | " 设图G有n个顶点,则邻接矩阵是一个`n*n`的方阵,定义为:\n", |
36 | 36 | " \n", |
37 | 37 | " \n", |
38 | 38 | " \n", |
39 | | - " 无向图:\n", |
| 39 | + "### 无向图:\n", |
40 | 40 | " \n", |
41 | 41 | "\n", |
42 | 42 | " \n", |
43 | | - " 有向图:\n", |
| 43 | + "### 有向图:\n", |
44 | 44 | " \n", |
45 | 45 | "\n", |
46 | 46 | " \n", |
47 | 47 | "\n", |
48 | | - "**网:**\n", |
| 48 | + "## 网\n", |
49 | 49 | "\n", |
50 | 50 | "在图的术语中,我们提到了网的概念,也就是每条边上都带有权的图叫做网。那些这些权值就需要保存下来。\n", |
51 | 51 | "\n", |
52 | 52 | "设图G是网图,有n个顶点,则邻接矩阵是一个`n*n`的方阵,定义为:\n", |
53 | 53 | "\n", |
54 | 54 | "\n", |
55 | 55 | "\n", |
56 | | - "有向图网:\n", |
| 56 | + "### 有向图网:\n", |
57 | 57 | "\n", |
58 | 58 | "\n", |
59 | 59 | "\n", |
60 | 60 | "## [数据结构:图的存储结构之邻接表](https://blog.csdn.net/jnu_simba/article/details/8866844)\n", |
61 | 61 | "\n", |
62 | | - "# 深度优先搜索:\n", |
| 62 | + "# 深度优先搜索(Depth-First-Search,DFS)\n", |
63 | 63 | "\n", |
64 | | - " 求连通简单图G的一棵生成树的许多方法中,深度优先搜索(depth first search)是一个十分重要的算法。\n", |
| 64 | + "求连通简单图G的一棵生成树的许多方法中,深度优先搜索(depth first search)是一个十分重要的算法。\n", |
| 65 | + "\n", |
| 66 | + "- 1.首先将根节点放入stack中。\n", |
| 67 | + "- 2.从stack中取出第一个节点,并检验它是否为目标。\n", |
| 68 | + " - 如果找到目标,则结束搜寻并回传结果。\n", |
| 69 | + " - 否则将它某一个尚未检验过的直接子节点加入stack中。\n", |
| 70 | + "- 3.重复步骤2。\n", |
| 71 | + "- 4.如果不存在未检测过的直接子节点。\n", |
| 72 | + " - 将上一级节点加入stack中。\n", |
| 73 | + " - 重复步骤2。\n", |
| 74 | + "- 5.重复步骤4。\n", |
| 75 | + "- 6.若stack为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。\n", |
65 | 76 | "\n", |
66 | 77 | "基本思想:\n", |
67 | 78 | "\n", |
|
94 | 105 | ], |
95 | 106 | "metadata": { |
96 | 107 | "kernelspec": { |
97 | | - "display_name": "tf36", |
| 108 | + "display_name": "Python 3", |
98 | 109 | "language": "python", |
99 | | - "name": "tf36" |
| 110 | + "name": "python3" |
100 | 111 | }, |
101 | 112 | "language_info": { |
102 | 113 | "codemirror_mode": { |
|
108 | 119 | "name": "python", |
109 | 120 | "nbconvert_exporter": "python", |
110 | 121 | "pygments_lexer": "ipython3", |
111 | | - "version": "3.6.8" |
| 122 | + "version": "3.7.3" |
112 | 123 | } |
113 | 124 | }, |
114 | 125 | "nbformat": 4, |
|
0 commit comments