In the example you gave
int *numbers;
numbers = malloc ( sizeof(int) * 10 );
there are no explicit benefits. Though, imagine 10 is a value that changes at runtime (e.g. user input), and that you need to return this array from a function. E.g.
int *aFunction(size_t howMany, ...)
{
int *r = malloc(sizeof(int)*howMany);
// do something, fill the array...
return r;
}
The malloc takes room from the heap, while something like
int *aFunction(size_t howMany, ...)
{
int r[howMany];
// do something, fill the array...
// you can't return r unless you make it static, but this is in general
// not good
return somethingElse;
}
would consume the stack that is not so big as the whole heap available.
More complex example exists. E.g. if you have to build a binary tree that grows according to some computation done at runtime, you basically have no other choices but to use dynamic memory allocation.