I have three arrays, such that:
Data_Arr = np.array([1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5])
ID_Arr = np.array([1, 2, 3, 4, 5])
Value_Arr = np.array([0.1, 0.6, 0.3, 0.8, 0.2])
I want to create a new array which has the dimensions of Data, but where each element is from Values, using the index position in ID. So far I have this in a loop, but its very slow as my Data array is very large:
out = np.zeros_like(Data_Arr, dtype=np.float)
for i in range(len(Data_Arr)):
out[i] = Values_Arr[ID_Arr==Data_Arr[I]]
is there a more pythonic way of doing this and avoiding this loop (doesn't have to use numpy)?
Actual data looks like:
Data_Arr = [ 852116 852116 852116 ... 1001816 1001816 1001816]
ID_Arr = [ 852116 852117 852118 ... 1001814 1001815 1001816]
Value_Arr = [1.5547194 1.5547196 1.5547197 ... 1.5536859 1.5536858 1.5536857]
shapes are:
Data_Arr = (4021165,)
ID_Arr = (149701,)
Value_Arr = (149701,)
d = dict(zip(ID_Arr, Value_Arr)); print([d[i] for i in Data_Arr])would be equivalent (although not utilising numpy).