The following behavior is expected and is what I get. This is consistent with how aliasing works for native Python objects like lists.
>>> x = np.array([1, 2, 3])
>>> y = x
>>> x
array([1, 2, 3])
>>> y
array([1, 2, 3])
>>> x = x + np.array([2, 3, 4])
>>> x
array([3, 5, 7])
>>> y
array([1, 2, 3])
But the following behavior is unexpected by changing x = x + np.array([2, 3, 4]) to x += np.array([2, 3, 4])
>>> x += np.array([2, 3, 4])
>>> x
array([3, 5, 7])
>>> y
array([3, 5, 7])
The Numpy version is 1.16.4 on my machine. Is this a bug or feature? If it is a feature how x = x + np.array([2, 3, 4]) differs from x += np.array([2, 3, 4])