I need to calculate statistics for each node of a 2D grid. I figured the easy way to do this was to take the cross join (AKA cartesian product) of two ranges. I implemented this using numpy as this function:
def node_grid(x_range, y_range, x_increment, y_increment):
x_min = float(x_range[0])
x_max = float(x_range[1])
x_num = (x_max - x_min)/x_increment + 1
y_min = float(y_range[0])
y_max = float(y_range[1])
y_num = (y_max - y_min)/y_increment + 1
x = np.linspace(x_min, x_max, x_num)
y = np.linspace(y_min, y_max, y_num)
ng = list(product(x, y))
ng = np.array(ng)
return ng, x, y
However when I convert this to a pandas dataframe it drops values. For example:
In [2]: ng = node_grid(x_range=(-60, 120), y_range=(0, 40), x_increment=0.1, y_increment=0.1)
In [3]: ng[0][(ng[0][:,0] > -31) & (ng[0][:,0] < -30) & (ng[0][:,1]==10)]
Out[3]: array([[-30.9, 10. ],
[-30.8, 10. ],
[-30.7, 10. ],
[-30.6, 10. ],
[-30.5, 10. ],
[-30.4, 10. ],
[-30.3, 10. ],
[-30.2, 10. ],
[-30.1, 10. ]])
In [4]: node_df = pd.DataFrame(ng[0])
node_df.columns = ['xx','depth']
print(node_df[(node_df.depth==10) & node_df.xx.between(-30,-31)])
Out[4]:Empty DataFrame
Columns: [xx, depth]
Index: []
The dataframe isn't empty:
In [5]: print(node_df.head())
Out[5]: xx depth
0 -60.0 0.0
1 -60.0 0.1
2 -60.0 0.2
3 -60.0 0.3
4 -60.0 0.4
values from the numpy array are being dropped when they are being put into the pandas array. Why?
productfunction you are using. As posted the code does not work for me.