Skip to main content
added 41 characters in body
Source Link
ocrdu
  • 1.8k
  • 3
  • 12
  • 24

Using two, nRF24L01 with two, ESP32 DEVKIT V1. TryingTrying to setup RF24 Library example, "Getting StartedStarted"." Able Able to transmit on both nodes;nodes, however, there is no payload received when switching to receive;receive while transmitting on both nodes.

SPI pins used:
MOSI = GPIO23,
MISO = GPIO19,
SCK = GPIO18,
CE = GPIO21,
CSN = GPIO5,
IRQ = No connection,
Vcc = 5.0 VoltsV using piggyback adapter with 3.3 VoltV regulator,
GND = Ground.

Are the SPI pins used correctcorrectly for the ESP32 DEVKIT V1?


 <script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino

RF24 Library example "Getting Started":

/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

   if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino

Radio_1.ino:

/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop

Using two, nRF24L01 with two, ESP32 DEVKIT V1. Trying to setup RF24 Library example, "Getting Started." Able to transmit on both nodes; however there is no payload received when switching to receive; while transmitting on both nodes.

SPI pins used:
MOSI = GPIO23,
MISO = GPIO19,
SCK = GPIO18,
CE = GPIO21,
CSN = GPIO5,
IRQ = No connection,
Vcc = 5.0 Volts using piggyback adapter with 3.3 Volt regulator,
GND = Ground.

Are SPI pins used correct for the ESP32 DEVKIT V1?


 <script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

   if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop

Using two, nRF24L01 with two, ESP32 DEVKIT V1. Trying to setup RF24 Library example, "Getting Started". Able to transmit on both nodes, however, there is no payload received when switching to receive while transmitting on both nodes.

SPI pins used:
MOSI = GPIO23,
MISO = GPIO19,
SCK = GPIO18,
CE = GPIO21,
CSN = GPIO5,
IRQ = No connection,
Vcc = 5.0 V using piggyback adapter with 3.3 V regulator,
GND = Ground.

Are the SPI pins used correctly for the ESP32 DEVKIT V1?

<script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino

RF24 Library example "Getting Started":

/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {
  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();               // start the timer
    bool report = radio.write(&payload, sizeof(float)); // transmit & save the report
    unsigned long end_timer = micros();                 // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop

Radio_1.ino:

/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Listed the pin allocation, to make them clearer. Split the code off and formatted it with a language specifier for syntax highlighting
Source Link

SPI pins used: MOSISPI pins used:
MOSI = GPIO23, MISO
MISO = GPIO19, SCK
SCK = GPIO18, CE
CE = GPIO21, CSN
CSN = GPIO5, IRQ
IRQ = No connection, Vcc
Vcc = 5.0 Volts using piggyback adapter with 3.3 Volt regulator, GND
GND = Ground.


<script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop

SPI pins used: MOSI = GPIO23, MISO = GPIO19, SCK = GPIO18, CE = GPIO21, CSN = GPIO5, IRQ = No connection, Vcc = 5.0 Volts using piggyback adapter with 3.3 Volt regulator, GND = Ground.


<script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop

SPI pins used:
MOSI = GPIO23,
MISO = GPIO19,
SCK = GPIO18,
CE = GPIO21,
CSN = GPIO5,
IRQ = No connection,
Vcc = 5.0 Volts using piggyback adapter with 3.3 Volt regulator,
GND = Ground.


<script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Bumped by Community user
Replaced Gist link with code block and removed name.
Source Link
William
  • 85
  • 1
  • 11

Gist of code for nRF24L01


<script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop

<script src="https://gist.github.com/Tech500/b57d4d356baaec48adc41196117c02aa.js"></script>
nRF24L01 Project for use with ESP32 DEVKIT V1
Details.txt
//Getting Started exammple:  Details Radio_0 and Radio_1.

RF24/examples/GettingStarted
Which radio is this? Enter '0' or '1'. Defaults to '0'
radioNumber = 0
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = TX
TX address      = 0x65646f4e31
pipe 0 ( open ) bound   = 0x65646f4e31
pipe 1 ( open ) bound   = 0x65646f4e32
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6

-------------------------------------

radioNumber = 1
*** PRESS 'T' to begin transmitting to the other node
SPI Frequency       = 10 Mhz
Channel         = 76 (~ 2476 MHz)
Model           = nRF24L01+
RF Data Rate        = 1 MBPS
RF Power Amplifier  = PA_LOW
RF Low Noise Amplifier  = Enabled
CRC Length      = 16 bits
Address Length      = 5 bytes
Static Payload Length   = 4 bytes
Auto Retry Delay    = 1500 microseconds
Auto Retry Attempts = 15 maximum
Packets lost on
    current channel = 0
Retry attempts made for
    last transmission   = 0
Multicast       = Disabled
Custom ACK Payload  = Disabled
Dynamic Payloads    = Disabled
Auto Acknowledgment = Disabled
Primary Mode        = RX
TX address      = 0x65646f4e32
pipe 0 (closed) bound   = 0x65646f4e32
pipe 1 ( open ) bound   = 0x65646f4e31
pipe 2 (closed) bound   = 0xc3
pipe 3 (closed) bound   = 0xc4
pipe 4 (closed) bound   = 0xc5
pipe 5 (closed) bound   = 0xc6
Radio_0.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 * 
 *  TX Code --Radio 0
 */

/*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 0.
  William Lucid
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN 21
#define CSN_PIN 5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 0;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = true;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  //radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();  // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails();  // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Radio_1.ino
/*
 * See documentation at https://nRF24.github.io/RF24
 * See License information at root directory of this library
 * Author: Brendan Doherty (2bndy5)
 */

/**
 * A simple example of sending data from 1 nRF24L01 transceiver to another.
 *
 * This example was written to be used on 2 devices acting as "nodes".
 * Use the Serial Monitor to change each node's behavior.
 */

 /*                
  Coded for a ESP32 DEVKIT V1 board type to make use of a pair of 
  nRF24L01+ 2.4 GHz. Transceivers
  SPI Pins used MOSI = 23, CE = 21, MSIO = 19, SCK = 18, CSN = 4
  This code is for Radio 1.
  
*/

#include <SPI.h>
#include "printf.h"
#include "RF24.h"

#define CE_PIN  21
#define CSN_PIN  5

// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);

// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination

// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1;  // 0 uses address[0] to transmit, 1 uses address[1] to transmit

// Used to control whether this node is sending or receiving
bool role = false;  // true = TX role, false = RX role

// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;

void setup() {

  Serial.begin(115200);
  while (!Serial) {
    // some boards need to wait to ensure access to serial over USB
  }

  pinMode(CE_PIN, OUTPUT);
  pinMode(CSN_PIN, OUTPUT);

  // initialize the transceiver on the SPI bus
  if (!radio.begin()) {
    Serial.println(F("radio hardware is not responding!!"));
    while (1) {}  // hold in infinite loop
  }

  radio.setAutoAck(false);

  // print example's introductory prompt
  Serial.println(F("RF24/examples/GettingStarted"));

  // To set the radioNumber via the Serial monitor on startup
  Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
  while (!Serial.available()) {
    // wait for user input
  }
  char input = Serial.parseInt();
  radioNumber = input == 1;
  Serial.print(F("radioNumber = "));
  Serial.println((int)radioNumber);

  // role variable is hardcoded to RX behavior, inform the user of this
  Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));

  // Set the PA Level low to try preventing power supply related problems
  // because these examples are likely run with nodes in close proximity to
  // each other.
  radio.setPALevel(RF24_PA_LOW);  // RF24_PA_MAX is default.

  // save on transmission time by setting the radio to only transmit the
  // number of bytes we need to transmit a float
  radio.setPayloadSize(sizeof(payload));  // float datatype occupies 4 bytes

  // set the TX address of the RX node into the TX pipe
  radio.openWritingPipe(address[radioNumber]);  // always uses pipe 0

  // set the RX address of the TX node into a RX pipe
  radio.openReadingPipe(1, address[!radioNumber]);  // using pipe 1

  // additional setup specific to the node's role
  if (role) {
    radio.stopListening();  // put radio in TX mode
  } else {
    radio.startListening();  // put radio in RX mode
  }

  // For debugging info
  printf_begin();             // needed only once for printing details
  // radio.printDetails();       // (smaller) function that prints raw register values
  radio.printPrettyDetails(); // (larger) function that prints human readable data

}  // setup

void loop() {

  if (role) {
    // This device is a TX node

    unsigned long start_timer = micros();                // start the timer
    bool report = radio.write(&payload, sizeof(float));  // transmit & save the report
    unsigned long end_timer = micros();                  // end the timer

    if (report) {
      Serial.print(F("Transmission successful! "));  // payload was delivered
      Serial.print(F("Time to transmit = "));
      Serial.print(end_timer - start_timer);  // print the timer result
      Serial.print(F(" us. Sent: "));
      Serial.println(payload);  // print payload sent
      payload += 0.01;          // increment float payload
    } else {
      Serial.println(F("Transmission failed or timed out"));  // payload was not delivered
    }

    // to make this example readable in the serial monitor
    delay(1000);  // slow transmissions down by 1 second

  } else {
    // This device is a RX node

    uint8_t pipe;
    if (radio.available(&pipe)) {              // is there a payload? get the pipe number that recieved it
      uint8_t bytes = radio.getPayloadSize();  // get the size of the payload
      radio.read(&payload, bytes);             // fetch payload from FIFO
      Serial.print(F("Received "));
      Serial.print(bytes);  // print the size of the payload
      Serial.print(F(" bytes on pipe "));
      Serial.print(pipe);  // print the pipe number
      Serial.print(F(": "));
      Serial.println(payload);  // print the payload's value
    }
  }  // role

  if (Serial.available()) {
    // change the role via the serial monitor

    char c = toupper(Serial.read());
    if (c == 'T' && !role) {
      // Become the TX node

      role = true;
      Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
      radio.stopListening();

    } else if (c == 'R' && role) {
      // Become the RX node

      role = false;
      Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
      radio.startListening();
    }
  }

}  // loop
Added video link.
Source Link
William
  • 85
  • 1
  • 11
Loading
Corrected post.
Source Link
William
  • 85
  • 1
  • 11
Loading
Source Link
William
  • 85
  • 1
  • 11
Loading